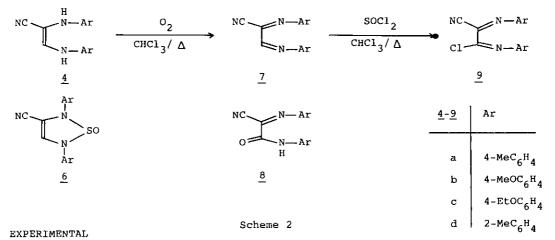

REACTION OF 1,4-DIAZA-1,3-BUTADIENES WITH CYANOTRIMETHYLSILANE. SYNTHESIS OF 2,3-BIS(ARYLAMINO)PROPENENITRILES AND THEIR CYCLIZATION TO 1,4-DIARYL-2,3-DIOXO-5-PYRAZINECARBONITRILES

Masahiko Takahashi,^{*} Hiroaki Miyahara, and Noriyuki Yoshida Department of Industrial Chemistry, Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan

<u>Abstract</u> — Reaction of 1,4-diaza-1,3-butadienes (<u>1</u>) with cyanotrimethylsilane gave 2,3-bis(arylamino)propenenitriles (<u>4</u>), which were cyclized to 1,4-diaryl-2,3-dioxo-5-pyrazinecarbonitriles (<u>5</u>) on treatment with oxalyl chloride. The propenenitriles (<u>4</u>) were oxidized by oxygen to 2,3-bis(arylimino)propanenitriles (<u>7</u>), which were chlorinated with thionyl chloride to yield 2,3-bis(arylimino)-3-chloropropanenitriles (<u>9</u>).

Cyanotrimethylsilane (TMSCN) has been extensively used in organic synthesis.¹ However, the reaction of carbon-nitrogen double bonds with TMSCN² and their synthetic applications remain comparatively unexplored. Reissert compounds became easy to prepare by the use of TMSCN in stead of potassium cyanide.³ Heterocyclic amine N-oxides⁴ were α -cyanated by TMSCN, whereas nitrones⁵ gave cyano-O-silylhydroxylamines or α -iminonitriles. Treatment of 1-aza-1,3-butadienes with TMSCN followed by hydrolysis afforded β ,Y-unsaturated amino acids.⁶ On the other hand, 2-F-alkylated 1-aza-1,3-butadienes underwent cyanation in the presence of palladium (II) salts at the 2- and/or 4-positions.⁷ Recently, we have shown that the carbon-nitrogen double bonds of 1,2,4,5-tetrazines⁸ reacted with TMSCN to give 4-aminopyrazoles.⁹ In continuation of our studies on the use of TMSCN in heterocyclic synthesis, we have found that 2,3-bis(arylamino)propenenitriles obtained from 1,4-diaza-1,3-butadienes and TMSCN are useful starting materials for the synthesis of 2,3-dioxo-5-pyrazinecarbonitriles.


1,4-Diaza-1,3-butadienes (<u>1a-d</u>) readily available from glyoxal and arylamines¹⁰ were treated with 2.4 equivalent of TMSCN in acetonitrile under reflux to yield

2,3-bis(arylamino)propenenitriles (4a-d) in 36-48% yields (Scheme 1). The structure 4 was confirmed on the basis of the analytical and spectral data (Table 1 and 2). The ir spectra of 4a-d showed absorptions due to amino and cyano groups at 3380-3260 and 2180-2160 cm^{-1} , respectively, and in the nmr spectra no proton resonance was observed in the region of methine protons. This indicates that the initial addition product $\underline{2}$ would undergo 1,3-hydrogen shift to form more resonance -stabilized propenenitriles (4) or the second addition product 3 would eliminate hydrogen cyanide to give 4. This class of compounds 4 seems to be rare in the literature; 2,3-dianilinopropenenitrile was prepared from 1,2-dichloro-1,2diethoxyethene.¹¹ Since these polyfunctional ethenes 4 appear to be useful starting materials for the synthesis of heterocyclic compounds, we studied the reactivities of 4 and found a facile preparation of 1,4-diary1-2,3-dioxo-5pyrazinecarbonitriles (5). The propenenitriles (4) reacted with oxalyl chloride in chloroform under reflux to yield cyclized products in 28-65% yields, which were assigned to be 5. The ir spectra of 5a-d showed cyano and carbonyl absorptions at 2230-2210 and 1695-1680 cm⁻¹, respectively. Although the resonances of the proton at the C-5 position of 5a-c in the nmr spectra were overlapped with those of aromatic protons, that of 5d was observed at δ 7.05 as a singlet. Pyrazine-2,3diones which have cyano groups at the position of C-5 and/or C-6 are scarecely known.¹² Recently, Mitsuhashi et al. have reported a synthesis of 2,3-dioxo-5,6pyrazinedicarbonitrile and its condensed heterocycles.¹³

Synthesis of other heterocycles was further attempted. Reaction of $\underline{4}$ with thionyl chloride was expected to give 1,2,5-thiadiazole S-oxide (6) (Scheme 2). However,

the product obtained in a low yield on treatment with thionyl chloride in chloroform under reflux was revealed to be 2,3-bis(arylimino)-3-chloropropanenitrile (<u>9a</u>) on the basis of the spectral and analytical data. The results suggest that <u>4a</u> was at first oxidized by oxygen to 2,3-bis(arylimino)propanenitrile (<u>7a</u>), which was then chlorinated with thionyl chloride. In fact, when a solution of <u>4a</u> in chloroform was heated in a stream of oxygen, <u>7a</u> was obtained in 46% yield after separation on column chromatography, accompanied by a by-product amide <u>8a</u>. This tendency to autoxidation is in accord with the case from 2,3,3tris(alkylamino)propenenitrile to 3-alkylamino-2,3-bis(alkylimino)propanenitrile. ¹⁴ Chlorination of <u>7a</u> with thionyl chloride in chloroform under reflux gave, as expected, <u>9a</u> in 12% yield. The propanenitrile derivatives <u>7b-d</u> and <u>9b-c</u> were also obtained in a similar manner and are shown in Table 1 and 2.

Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. ¹H-Nmr, ir, and mass spectra were measured with a JEOL JNM-PMX 60, a JASCO A-102, and a JEOL JMS-DX 300 spectrometer, respectively. Microanalysis was performed with a Shimadzu UM-3B microanalyzer. <u>General Procedure for 2,3-Bis(arylamino)propenenitriles (4a-d</u>). A mixture of 1,4-diaryl-1,4-diaza-1,3-butadienes (<u>1</u>)¹⁰ (1.0 mmol) and TMSCN (2.4 mmol) in acetonitrile (10 ml) was refluxed for 4-12 h under nitrogen atmosphere. After evaporation of the solvent the residue was recrystallized to give <u>4</u>. <u>Cyclization of 4a-d to 1,4-Diaryl-2,3-dioxo-5-pyrazinecarbonitriles (5a-d</u>). To a stirred solution of <u>4</u> (1.0 mmol) in anhydrous CHCl₃ (5 ml) was added oxalyl chloride (1 ml) dropwise at room temperature. The mixture turned green or black immediately. After refluxing for 2-5 h the precipitates formed were collected by

Compound	Yield	м. р.		Molecular	Calcd. (%)		Found (%)	
	(%)	(°C)		Formula	с	н	с	Н
<u>4a</u>	48	163-164	(MeOH)	C ₁₇ ^H 17 ^N 3	77.53	6.51	77.60	6.36
<u>4b</u>	48	152-153	(C6H6)	^C 17 ^H 17 ^N 3 ^O 2	69.13	5.80	69.28	5.64
<u>4c</u>	36	138-141	(C ⁶ H ⁶)	C ₁₉ ^H 21 ^N 3 ^O 2	70.56	6.55	70.51	6.78
<u>4d</u>	39	137-139	(MeOH)	^C 17 ^H 17 ^N 3	77.53	6.51	77.78	6.72
<u>5a</u>	65	>300	(MeCN)	^C 19 ^H 15 ^N 3 ^O 2	71.91	4.76	72.16	4.73
<u>5b</u>	58	>300	(MeCN)	^C 19 ^H 15 ^N 3 ^O 4	65.32	4.33	65.44	4.51
<u>5c</u>	51	260-262	(MeCN)	^C 21 ^H 19 ^N 3 ^O 4	66.83	5.07	66.85	5,22
<u>5d</u>	28	180-182	(PhMe)	^C 19 ^H 15 ^N 3 ^O 2	71.91	4.76	72.07	4.90
<u>7a</u>	46	107-110	(MeOH)	^C 17 ^H 15 ^N 3	78.13	5.79	78.10	5.84
<u>7b</u>	34	144-145	(C6H6)	^C 17 ^H 15 ^N 3 ^O 2	69.61	5.15	69.85	4.84
<u>7c</u>	50	113-115	(C ₆ H ₆)	^C 19 ^H 19 ^N 3 ^O 2	71.01	5.96	70.82	6.00
<u>7d</u>	29	100-102	(C6H6)	C ₁₇ H ₁₅ N ₃	78.13	5.79	78.30	5.97
<u>8a</u>	10	161-162	(C ₆ H ₆)	^C 17 ^H 15 ^N 3 ^O	73.63	5.45	73.47	5.50
<u>9a</u>	12	160-162	(C6H6)	$C_{17}H_{14}Cln_3$	69.04	4.77	68.74	4.77
<u>9b</u>	21	156-158	(C6H6)	^C 17 ^H 14 ^{C1N} 3 ^O 2	62.30	4.31	62.39	4.35
<u>9c</u>	44	159-160	(C ₆ H ₆)	C ₁₉ H ₁₈ ClN ₃ O ₂	64.14	5.10	64.34	5.13

Table 1. Physical and Analytical Data of Compounds 4, 5, 7, 8, and 9

filtration, washed with a small amount of MeOH, and were recrystallized to give 5. Oxidation of <u>4a-d</u> to 2,3-Bis(arylimino)propanenitriles (<u>7a-d</u>).

A solution of $\underline{4a}-\underline{c}$ (1.0 mmol) in CHCl_3 (20 ml) or $\underline{4d}$ (1.0 mmol) in acetonitrile (20 ml) was refluxed for 5-17 h in a stream of oxygen. After evaporation of the solvent the residue was purified by recrystallization to give $\underline{7b}$ and \underline{c} , or column chromatography on silica gel with CHCl_3 to give $\underline{7a}$ and \underline{d} . In the case of $\underline{4a}$, $\underline{8a}$ was also separated from the silica gel column in addition to $\underline{7a}$. Chlorination of $\underline{7a}-\underline{c}$ to 2,3-Bis(arylimino)-3-chloropropanenitriles ($\underline{9a}-\underline{c}$). A mixture of $\underline{7}$ (1.0 mmol) and thionyl chloride (1 ml) in anhydrous CHCl_3 (5 ml) was refluxed for 2-3 h. After evaporation of the solvent, the residue was purified by column chromatography on silica gel with CHCl_3 to give $\underline{9}$.

Compound	Ms (M ⁺) (m/z)	Ir (KBr) (cm ⁻¹)		¹ _{H-Nmr} (δ, ppm)
<u>4a</u>	263	3350 3260	2170 1640	2.28 (s, 6H) 4.40 (s, 1H) 6.60-7.50 (m, 10H) ^a
<u>4b</u>	295	3320 2180	1640 1500	3.72 (s, 3H) 3.69 (s, 3H) 5.62 (s, 1H) 6.73-7.61 (m, 10H) ^b
<u>4c</u>	323	3320 2170	1635 1510	1.40 (t, J=7 Hz, 6H) 4.00 (q, J=7 Hz, 4H) 4.30 (s, 1H) 6.60-7.45 (m, 10H) ^{a}
<u>4d</u>	263	3380 3330	2160 1640	2.05 (s, 3H) 2.25 (s, 3H) 4.47 (s, 1H) 6.63-7.50 (m, 10H) ^a
<u>5a</u>		2220 1680	1640 1505	2.06 (s, 6H) 6.97-7.13 (m, 9H) ^C
<u>5b</u>		2220 1680	1595 1500	3.59 (s, 6H) 6.71-7.12 (m, 9H) ^C
<u>5c</u>	377	2210 1695	1640 1505	1.11 (t, J=7 Hz, 6H) 3.92 (q, J=7 Hz,
				4H) 6.76-7.17 (m, 9H) ^C
<u>5d</u>	317	2230 1690	1635 1485	2.27 (s, 6H) 7.05 (s, 1H) 7.39 (s, 8H) ^a
<u>7a</u>	261	2210 1600	1580 1500	6H) 2.38 (s, 6H) 7.23 (s, 4H) 7.28 (s, 4H) 8.35 (s, 1H) ^a
<u>7b</u>	293	2200 1580	1485 1450	3.87 (s, 6H) 6.88~7.65 (m, 8H) 8.40 (s, 1H) ^a
<u>7c</u>	321	2200 1595	1560 1495	1.45 (t, J=7 Hz, 6H) 4.13 (q, J=7 Hz, 4H) 6.88-7.67 (m, 8H) 8.42 (s, 1H) ^a
<u>7d</u>	261	2200 1615	1480 1455	2.30 (s, 3H) 2.47 (s, 3H) 7.23 (s, 8H) 8.33 (s, 1H) ^a
<u>8a</u>	277	3330 2200	1670 1510	2.35 (s, 3H) 2.45 (s, 3H) 7.07-7.62 (m, 8H) 8.95 (br s,1H) ^a
<u>9a</u>	295	2210 1630	1590 1560	2.39 (s, 3H) 2.42 (s, 3H) 7.25 (s, 4H) 7.35 (s, 4H) ^a
<u>9b</u>	327	2200 1570	1480 1445	3.87 (s, 6H) 6.90-7.72 (m, 8H) ^a
<u>9c</u>	355	2100 1580	1490 1465	1.43 (t, J=7 Hz, 6H) 4.08 (q, J=7 Hz, 4H) 6.83-7.63 (m, 8H) ^a

Table 2. Spectral Data of Compounds 4, 5, 7, 8, and 9

^aIn CDCl₃. ^bIn acetone-d₆. ^cIn CF₃COOH.

REFERENCES

- (a) W. P. Weber, "Silicon Reagents for Organic Synthesis," Springer-Verlag, New York (1983).
 (b) W. C. Groutas and D. Felker, <u>Synthesis</u>, 1980, 861.
- (a) I. Ojima, S. Inaba, and K. Nakatsugawa, <u>Chem. Lett.</u>, 1975, 331. (b) I.
 Ojima and S. Inaba, Chem. Lett., 1975, 737.
- (a) B. C. Uff, S. L. A. A. Chen, Y. Ho, F. D. Popp, and J. Kant, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1984, 1245. (b) W. Dostal and G. Heinisch, <u>Heterocycles</u>, <u>24</u>, 793 (1986). (c) S. Ruchirawat, N. Phadungkul, M. Chuankamnerdkarn, C. Thebtaranonth, <u>Heterocycles</u>, <u>6</u>, 43 (1977).
- (a) W. K. Fife, <u>Heterocycles</u>, 22, 93 (1984).
 (b) T. Sakamoto, S. Kaneda, S. Nishimura, and H. Yamanaka, Chem. Pharm. <u>Bull.</u>, <u>33</u>, 565 (1985).
- (a) A. Padwa and K. F. Koehler, <u>J. Chem. Soc., Chem. Commun.</u>, 1986, 789. (b)
 D. K. Dutta, D. Prajapati, J. S. Sandhu, and J. N. Baruah, <u>Synth. Commun.</u>, 15, 335 (1985).
- 6. W. J. Greenlee, J. Org. Chem., 49, 2632 (1984).
- 7. Y. Yamasaki, T. Maekawa, T. Ishihara, and T. Ando, Chem. Lett., 1985, 1387.
- 8. M. Takahashi and H. Kikuchi, Tetrahedron Lett., 28, 2139 (1987).
- P. Imming, R. Mohr, E. Muller, W. Overheu, and G. Seitz, <u>Angew. Chem. Int. Ed.</u> Engl., 21, 284 (1982).
- 10. J. M. Kliegman and R. K. Barnes, J. Org. Chem., 35, 3140 (1970).
- 11. H. Baganz and J. Pelug, Chem. Ber., 90, 386 (1957).
- 12. G. W. H. Cheeseman and E. S. G. Werstiuk, "Advances in Heterocyclic Chemistry, " Vol. 14, p 99, ed. by A. R. Katritzky and A. J. Boulton, Academic Press, New York (1972).
- 13. (a) T. Suzuki, Y. Nagae, and K. Mitsuhashi, J. Heterocycl. Chem., 23, 1419
 (1986). (b) K. Mitsuhashi, Y. Nagae, and T. Suzuki, J. Heterocycl. Chem., 23, 1741 (1986).
- 14. L. De Vries, J. Org. Chem., 36, 3442 (1971).

Received, 6th August, 1987