
TWO NEW OXAZOLES FROM AMYRIS TEXANA P. WILSON

Xorge A. Domínguez,¹ Gabriel de la Fuente,^{*} Antonio G. González, Matías Reina, and Isabel Timón Centro de Productos Naturales Orgánicos "Antonio González", CSIC-Universidad de La Laguna, Tenerife, Spain
¹Instituto Tecnológico de Monterrey, Monterrey, Mexico

<u>Abstract</u> - From the roots of <u>Amyris texana</u> P. Wilson, two new oxazoles, texamine (1) and texaline (2) were isolated together with O-isopentenylhalfordinol (3). The structures of the new compounds were established by spectroscopic methods, including long-range HETCOR 2-D nmr.

Oxazole alkaloids are rare naturally-occurring compounds, and those found in flowering plants such as the genera Lolium,¹ Amyris,²⁻⁴ Aeglopsis,⁵ Aegle,⁶⁻⁷ and Halfordia^{8,9} are structurally simple substances bearing substituents at the 2 and 5 positions of the ring.

During our study of the chemical constituents of the roots of <u>Amyris texana</u> P. Wilson, we have isolated two new 2,5-diaryloxazoles, texamine (1) and texaline (2), together with O-isopentenylhalfordinol (3).

5

— 35 —

Texanine (1) had mp 134-137°C, crystallized from ethyl acetate-hexane. Its elemental composition $C_{16}H_{11}NO_3$ was established by high-resolution mass measurement; M^+ , m/z 265.0748, Δ -1.0 mmu. Ir (KBr), 1600, 1585, 1543, 1495, 1480, and 1445 (aromatic), 1240 and 928 cm⁻¹ (ether). The uv (MeOH) spectrum gave maxima at 215, 253, and 324 nm (log ϵ 4.53, 4.39, and 4.63, respectively), characteristic of a 2,5-diaryloxazole.¹⁰ The typical cleavages of 2,5-diaryloxazoles¹¹ were also observed in its ms, giving ions at m/z, 265 (100%) M⁺, 251 (12%), 237 (19%) M⁺-CO, 236 (6%) $|M^+-CO|-H$, 210 (9%) $|M^+-CO|-HCN, 209$ (10%) $|M^+-CO|-HCN|-H$, 180 (36%), 152 (82%), 121 (11%), 105 (21%), and 77 (33%).

The ¹H-nmr spectrum (200 MHz, CDCl₃) of texanine (1) exhibited signals at δ 5.96 (2H, s, O₂CH₂), 6.84 (1H, d, J = 8 Hz, H-5"), 7.13 (1H, d, J = 1.6 Hz, H-2"), 7.19 (1H, dd, J₁ = 8 Hz, J₂ = 1.6 Hz, H-6"), 7.27 (1H, s, H-4), 7.44 (3H, m, 2H-3' and H-4'), and 8.05 (2H, m, 2H-2').

Texaline (2), $C_{15}H_{10}N_{2}O_{3}$ (M⁺, m/z 266.0699, Δ -0.8 mmu), had mp 171-174°C, crystallized from ethyl acetate-hexane. Ir (KBr), 1608, 1580, 1568, 1485 (br), 1445, and 1427 (aromatic), 1230 and 928 cm⁻¹ (ether). The uv (MeOH) spectrum provided maxima at 202 (log ϵ 4.64), 221 (sh), 257 (4.24), and 331 nm (4.50), and a bathochromic shift to 264 and 348 nm was produced after acid addition.³ Its ms presented ions at m/z, 266 (100%), M⁺, 252 (12%), 238 (19%) M⁺-CO, 211 (14%) |M⁺-CO|-HCN, 210 (9%) |M⁺-CO|-HCN|-H, 181 (27%), 153 (55%), 133 (25%), 121 (13%), 106 (12%), and 78 (17%).

The ¹H-nmr spectrum (200 MHz, CDCl₃) of texaline (2) gave signals at δ 6.00 (2H, s, O_2CH_2), 6.87 (1H, d, J = 8 Hz, H-5"), 7.14 (1H, d, J = 1.6 Hz, H-2"), 7.21 (1H, dd, $J_1 = 8$ Hz, $J_2 = 1.6$ Hz, H-6"), 7.32 (1H, s, H-4), 7.39 (1H, dd, $J_1 = 7.9$ Hz, $J_2 = 4.9$ Hz, H-5'), 8.31 (1H, dt, $J_1 = 8.1$ Hz, $J_2 = 1.9$ Hz, H-4'), 8.67 (1H, br d, J = 4.8 Hz, H-6'), and 9.30 (1H, br s, H-2').

The oxazole O-isopentenylhalfordinol (3), mp 118-119°C, was identified by comparison of its spectral data (ir, uv, ms, and 1 H-nmr) with those reported in the literature^{5,6} Unambiguous proof of the structures of texanine (1) and texaline (2) was provided by their BBD and DEPT 13 C-nmr spectra (Table 1), and the connectivities observed in long-range HETCOR 2-D nmr experiments (Table 2). The assignments given in Table 1 were also made taking into account the spectral data of 2,5-diphenyloxazole (5), 2-phenyloxazole (4), 12 and 3-methyl-2-buten-1-ol. 13

roramor (3).												
с	1	5	4	2	3	с	1	5	4	2	3	
2	160.8	161.3	162.2	158.4	159.6	2 "	105.0	124.4		105.1	126.0	
4	122.5	123.6	128.6	122.7	122.3	3"	148.4	129.0		148.4	115.4	
5	151.3	151.4	139.1	152.2	152.4	4 "	148.4	128.5		148.5	158.3	
1'	127.7	127.6	127.7			5 "	108.9			109.1		
2'	126.3	126.4	126.6	147.6	147.6	6"	118.4			118.4		
3'	128.9	129.1	129.0	124.0	124.0	1"	101.5			101.7	65.1	
4'	130.3	130.5	130.6	133.5	133.3	2 ""					119.5	
5'				123.8	123.7	3"'					138.6	
б'				150.9	150.8	4 "'					18.4	
1"	122.4	128.2		121.9	120.5	5 "'					25.9	

Table 1. ¹³C-Nmr chemical shifts and assignments for texanine (1), 2,5-diphenyloxazole (5), 2-phenyloxazole (4), texaline (2), and O-isopentenylhalfordinol (3).

Chemical shifts in ppm downfield from TMS. Solvent deuterochloroform.

Table 2. ${}^{13}C^{-1}H$ long-range connectivities in texanine (1) and texaline (2).

(1)	с	δ	Н	(2) C	δ	Н
-	2	160.8	H-4	2	158.4	H-4
	4	122.5	H-4	4	122.7	H -4
	5	151.3	H-2", H-6"	5	152.2	H-4, H-2", H-6"
	1'	127.7	H-3'	2 '	147.6	
	2'	126.3	H-2', H-4'	3'	124.0	H-5'
	3'	128.9	H-3'	4 '	133.5	H-4 '
	4'	130.3	H-2 '	5'	123.8	н-5'
	1"	122.4	H-4, H-5"	6'	150.9	
	2"	105.0	H-2", H-6"	1"	121.9	H-5"
	3"	148.4		2 "	105.1	H-6", H-2"
	4"	148.4	H-2", H-5", H+6", H-1"	3"	148.4	H-5", H-1"
	5"	108.9	H-5 "	4 "	148.5	H-5", H-1"
	6"	118.4	H-2", H-6"	5"	109.1	H-5"
	1"	101.5	H-1"'	6"	118.4	H-2", H-6"
			-	1"	101.7	H-1"

ACKNOWLEDGEMENT

We thank the Comisión Asesora de Investigación Científica y Técnica, Spain, for financial support.

REFERENCES

- 1 R.S. Karimoto, B. Axelrod, J. Wolinsky, and E.D. Schall, <u>Phytochemistry</u>, 1964, 3, 349.
- 2 S. Philip, B.A. Burke, and H. Jacobs, Heterocycles, 1984, 22, 9.
- 3 B.A. Burke and H. Parkins, Tetrahedron Letters, 1978, 2723.
- 4 B.A. Burke, H. Parkins, and A.M. Talbot, Heterocycles, 1979, 12, 349.
- 5 D.L. Dreyer, <u>J. Org. Chem.</u>, 1968, 33, 3658.
- 6 M.D. Manandahar, A. Shocb, R.S. Kapil, and S.P. Popli, <u>Phytochemistry</u>, 1978, 17, 1814.
- 7 B.R. Sharma and P. Sharma, Planta Med., 1981, 43, 102.
- 8 W.D. Crow and J.H. Hodgkin, Tetrahedron Letters, 1963, 85.
- 9 W.D. Crow and J.H. Hodgkin, Aust. J. Chem., 1964, 17, 119.
- 10 A.T. Balaban, I. Bally, P.T. Frangopol, M. Bacescu, E. Cioranescu, and L. Birladeanu, <u>Tetrahedron</u>, 1963, <u>19</u>, 169.
- 11 W.D. Crow, J.H. Hodgkin, and J.S. Shannon, Aust. J. Chem., 1965, 18, 1433.
- 12 L.I. Belen'kii, V.S. Bogdanov, I.A. Abronin, G.P. Gramova, M.A. Cheskis, and R.Z. Zakharyan, Chem. Scripta, 1985, 25, 266.
- 13 H. Brouwer and J.B. Stothers, Can. J. Chem., 1972, 50, 1361.

Received, 17th August, 1987