PROCUMBINE, A NEW SECOBERBINE ALKALOID ≠

Eva Táborská^a, František Věžník^a, Jiří Slavík^a, Petr Sedmera^b, and Vilím Šimánek^{C+}

- a. Department of Medical Chemistry and Biochemistry, Purkyně
 University, 662 43 Brno, Czechoslovakia
- Institute of Microbiology, Czechoslovak Academy of Sciences,
 142 20 Prague, Czechoslovakia
- c. Institute of Medical Chemistry, Palacký University,
 775 15 Olomouc, Czechoslovakia

<u>Abstract</u> —— The structure determination of the secoberbine alkaloid procumbine (<u>2</u>) isolated from <u>Hypecoum procumbens</u> and <u>H</u>. leptocarpum is reported.

The alkaloids from <u>Hypecoum procumbens</u> L. and <u>H. leptocarpum</u> Hook f. <u>et</u> Thoms (Papaveraceae) have been the subject of several investigations¹⁻⁶. Recently, we have reported on the isolation of alkaloids from the whole plants of both species⁷. In addition, we have isolated, in low yield, an orange-red base to which we have assigned the trivial name procumbine. The structure of procumbine is described in the present communication.

Procumbine, an optically inactive compound, mp $191-192^{\circ}C$ (MeOH), was obtained by repeated crystallization of the quaternary alkaloids fraction⁷. It gave a positive FeCl₃ test for phenols. Its uv spectrum is characteristic of cyclic secoberbines of the hypecorinine type (<u>1</u>) and is pH-dependent (Fig. 1)^{8,9}. The ¹H nmr spectrum of procumbine in CDCl₃ (Table 1) showed the presence of two tetrasubstituted benzene rings (one of them with two <u>para</u> protons and the other with two <u>ortho</u> protons), one methoxyl, one methylenedioxy group, one -NCH₃ group, and one phenolic group. The aliphatic part of the spectrum also

Dedicated to Professor Tetsuji Kametani on the occassion of his 70th birthday

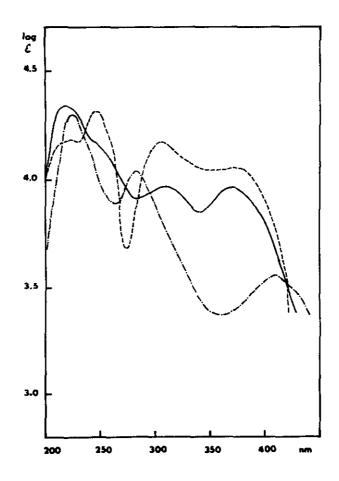
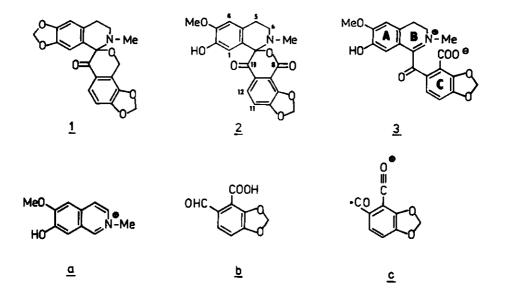



Fig. 1. Uv spectra of procumbine (<u>2</u>) in methanol (----), in 0.01 M methanolic NaOH (-.-.) and in 0.01 M methanolic HCl (---).

exhibited one four-protons multiplet. In CD_3OD , the -NCH₃ singlet is shifted downfield by 0.94 ppm and aliphatic part of the spectrum displays two two-protons triplets (Table 1). The ¹³C nmr spectrum showed 20 lines corresponding to the 20 carbon atoms of the molecule (Table 1). This spectrum revealed the presence of four methine sp² carbons, one methoxyl, one -NCH₃ group, one methylenedioxy group, and two methylene groups. Chemical shifts of both methylene carbons correspond to the moiety $Ar-CH_2-CH_2-N$. The molecule also contains two carbonyl groups. One of these resonates at 189.6 ppm, typical for a conjugated carbonyl group, the other, at 169.1 ppm, belongs to the carboxyl carbon of the corresponding lactone fragment. Of nine quaternary carbons, four singlets correspond to sp^2 carbons bound to oxygen, four sp^2 carbons bound to carbon, and the singlet at 111.6 ppm is due to sp^3 carbon bound to oxygen with the vicinal electron-negative substituent. The ir spectrum (KBr) exhibited strong absorptions at 1655 and 1638 cm⁻¹ due to a six-membered lactone and conjugated carbonyl groups. Spectral data indicate that procumbine belongs to the secoberbine type structurally related to hypecorinine $(\underline{1})^{10}$. It differs from $\underline{1}$ by substitution on ring A and by the oxo group at the C-8 position. The position of the methoxyl on ring A can be deduced from its chemical shift (Table 1). In the tetramethoxy analog of hypecorinine, the methoxyl resonating at 4.04 ppm (Table 1) must be attached to C-3 position of ring A.

The spectral data support the proposed cyclic secoberbine structure (<u>2</u>) for procumbine. Further proof was obtained from the mass spectrum¹¹; in addition to the molecular ion at m/z 383 which confirmed the molecular formula $C_{20}H_{17}NO_7$ deduced by elemental analysis⁷, the position of substituents on both aromatic nuclei is determined by fragments <u>a</u> at m/z 190 ($C_{11}H_{12}NO_2$) and <u>b</u> at m/z 194 ($C_{9}H_{4}O_{5}$). The ion <u>b</u> loses water and yields the fragment <u>c</u> at m/z 176 ($C_{9}H_{4}O_{4}$).

Shamma et al.¹² suppose that secoberbines are biogenetically derived from protoberberines. Except hypecorinine (13-oxohypecorine, <u>1</u>) and hypecorine, all known secoberbine alkaloids possess a 1-benzyltetrahydroisoquinoline skeleton with hydroxymethyl, formyl or carboxyl group on the ring C at position 2^{13} . The pH-dependent changes in uv spectra of procumbine (<u>2</u>) indicate an equilibrium between the cyclic form <u>2</u> and the open form of quaternary imminium salt of the secoberbine carboxylic acid <u>3</u>. Procumbine (<u>2</u>) represents another intermediate stage in biogenetic transformations of protoberberines into other structural types of isoquinoline alkaloids.

Proton	CDC13	00300	Carbon ^a	CDC13
 1-Н	6.645	6.915	1	106.3
4-H	6.33s	6.51s	2	146.6
5-H2	3.12m	3.16t (J 6.1)	3	149.4
6-H2	9.12m	4.00t (J 6.1)	4	108.4
11-H	7.20d (J 8.5)	7.19d (J 8.5)	4a	135.0
12-H	7.80d (J 8.5)	7.53d (J 8.5)	5	28.3
N-CH3	2.69s		6	46.7
N ⁺ -CH ₃		3.63s	в	169.1
0-CH3	4.04s	3.96s	8a	135.0
он	12.68bs		9	152.3
осн ₂ о	5,90s	6.02s	10	155.2
			11	115.3
			12	121.0
			12a	125.0
			13	189.6
			14	111.6
			14a	124.8
			0CH3	56.5
			N-CH3	39.6
			0CH20	101.6

Table 1. 1 H (59.80 MHz) and 13 C (15.04 MHz) nmr data of procumbine (2)

^a tentative assignment

ACKNOWLEDGEMENT

We are grateful to Dr. L. Dolejš (Institute of Organic Chemistry and Biochemistry, Prague) for the ms measurements.

REFERENCES AND NOTES

- 1. J. Slavík and L. Slavíková, Coll. Czech. Chem. Commun., 1961, 26, 1472.
- T. Gozler, M. Ali Önür, R.D. Minard, and M. Shamma, <u>J. Nat. Prod.</u>, 1983, <u>46</u>, 414.
- 3. T. Gozler, B. Gözler, I. Weiss, A.J. Freyer, and M. Shamma, <u>J. Am. Chem.Soc.</u>, 1984, <u>106</u>, 6101.
- 4. B. Chen and Q. Fang, Yaoxue Xuebao, 1985, 20, 658.
- 5. M.A. Önür, M.H.A. Zarga, and T. Gozler, Planta Med., 1986, 70.
- 6. E. Táborská, M. Mikešová, and F. Věžník, Scripta Med., 1985, 58, 116.
- E. Táborská, M. Mikešová, F. Věžník, and J. Slavík, <u>Coll. Czech. Chem.</u> <u>Commun.</u>, 1987, <u>52</u>, 508. We isolated 23.0 mg of procumbine from <u>H. procumbens</u> (6.11 kg of dry plant) and 3.3 mg of that from <u>H. leptocarpum</u> (3.90 kg of dry plant). Anal. Found: C, 62.66; H, 4.31, M, 3.61. C₂₀H₁₇NO₇ requires: C, 62.66; H, 4.43; N, 3.65%.
- 8. Uv spectra of procumbine: λ_{\max} (MeOH) 222, 247sh, 310, and 370 nm (log ε 4.35, 4.19, 3.96, and 3.96); λ_{\max} (0.01 M NaOH) 224, 285, and 408 nm (log ε 4.30, 4.04, and 3.57); λ_{\max} (0.01 M HC1) 247, 304, and 370 nm (log ε 4.34, 4.18, and 4.05).
- D. Walterová, V. Preininger, L. Dolejš, F. Grambal, M. Kyselý, I. Válka, and V. Šimánek, <u>Coll. Czech. Chem.</u> Commun., 1980, 45, 964.
- L.D. Yakhontova, M.E. Komarova, D.N. Tolkachev, and M.E. Perelson, <u>Khim.</u> <u>Prir. Soed.</u>, 1976, 491.
- 11. Ms (m/z, rel. intensity, %) 383 (M⁺, 3.8), 339 (1.1), 338 ($C_{19}H_{16}NO_5$, 1.6), 324 (1.1), 310 ($C_{18}H_{16}NO_4$, 3.2), 206 ($C_{11}H_{12}NO_3$, 9.7), 194 ($C_{9}H_6O_5$, 23), 191 (8), 190 ($C_{11}H_{12}NO_2$, 100), 189 (12), 188 ($C_{11}H_{10}NO_2$, 17), 176 ($C_{9}H_4O_4$, 10), 165 ($C_{8}H_5O_4$, 10), 150 (6.5), 148 ($C_{8}H_4O_3$, 27), 147 ($C_{8}H_9NO$, 13.5), 122 ($C_{7}H_6O_2$, 16).
- M. Shamma, A.S. Rothenberg, G.S. Jayatilake, and S.F. Hussain, <u>Tetrahedron</u>, 1978, <u>34</u>, 635.

13. V. Šimánek and D. Walterová, in "The Alkaloids" (A. Brossi, Ed.), in press.

.

Received, 18th August, 1987