A NEW INTERMEDIATE FOR METHYL JASMONATE AND PG'S FROM IRIDOID GLUCOSIDE AUCUBIN¹

Enrico Davini, ² Carlo Iavarone, and Corrado Trogolo Centro C.N.R. per lo Studio della Chimica delle Sostanze Organiche Naturali - Dipartimento di Chimica - Università "La Sapienza," Piazzale Aldo Moro 2 - 00185 Roma, Italy

<u>Abstract</u> - A synthetic approach to biologically active cyclopentanoids or their intermediates starting from natural heterocyclic precursors (iridoid glucosides) has been devised. Aucubin 1 was efficiently converted into chiral cyclopentenone 2, intermediate for synthesis of methyl jasmonate-type compounds and prostaglandins.

Iridoid glucosides are a widespread class of natural compounds with heterocyclic (cyclopenta[c]pyran) skeleton whose most common and abundant representative is aucubin $\underline{\mathbf{1}}$.

Starting by this natural chiral template we are running $^{3-6}$ a program of syntheses of biologically active cyclopentanoids or their intermediates. In continuation of our work we put now our attention upon isoeucommiol $\underline{3}$ whose unique utilization for synthetic purposes was the acid-catalyzed transformation into $\underline{\text{cis}}$ -2-oxa-bicyclo [3.3.0]-6.7-dihydroxymethyl-oct-7-ene $\underline{4}$, a precursor of modified PG's. $\underline{3}$. The interest for the cyclopentenetetrol $\underline{2}$ is due also to its easy preparation by NaBH₄ reduction of the aglycone of $\underline{1}$ (aucubigenin $\underline{2}$) carried out at first on the isolated aglycone $\underline{8}$ and then directly "one-pot" on the enzymatic ($\underline{6}$ -glucosidase) hydrolizate of $\underline{1}^{3}$ ($\underline{y}_{1\rightarrow 3}$ = 92%).

In this report we describe the conversion of $\underline{3}$ into bis-O-acetylcyclopentenone $\underline{9}$, a chiral intermediate useful either for syntheses of PG's or of methyl dehydrojasmonate $\underline{13}$ and methyl jasmonate $\underline{14}$, the latter identified as an insect sex-attractant pheromone or a senescence promoting substance in some plants $\underline{10}$ and both used in perfume industry. $\underline{11}$

Epoxidation of $\underline{2}$ with m-chloro perbenzoic acid in EtOH (12 h at r.t.) proceeded in a stereoselective way affording only the epoxide $\underline{5}^{12}$ with the oxirane ring in β configuration. This result was in agreement with the well known $\underline{\text{syn}}$ orienting effect exerted by the allylic hydroxyl function in the epoxidation of 1-hydroxy-2-cyclopentenes. LiAlH₄ reduction of acetylepoxy derivative $\underline{6}^{14}$ in anhydrous DME afforded the cyclopentanepentol $\underline{7}^{15}$ (68% overall yield from $\underline{2}$), whose $\underline{\text{vic}}$ -diol function was

successively oxidized (NaIO₄) to give the β -hydroxy cyclopentanone derivative $\underline{8}$ (y = 48%).

In spite of literature data ¹⁶ describing the great tendence of similar cyclic β -ketols to be dehydrated to the corresponding enones by acid or basic catalysis, $\underline{8}$ resulted in rather stable compound under these conditions and the dehydration to the enone system was achieved only under acetylation conditions which transformed $\underline{8}$ into the acetylenone $\underline{9}^{17}(y = 61\%)$.

This readily available cyclopentenone may be considered a useful chiral intermediate for the synthesis of jasmonate-type compounds and PG's.

In fact 2 can be easily converted, by routine methodologies, into diesters $\underline{11}$ and $\underline{12}$, in their turn reported precursors 18 , 19 of methyl jasmonate $\underline{14}$ and methyl dehydrojasmonate $\underline{13}$ respectively, through known and well established chemistry (C-alkylation of β -ketoester function with 2-pentynyl bromide followed by cis-hydrogenation of triple bond by Lindlar 19 or palladium-on-barium sulfate 18 catalyst and final acid-catalyzed decarboxylation 19 providing the thermodynamically stable trans isomer).

On the other side the Corey lactone analogue $\underline{15}$ should be obtained from γ, δ unsaturated carboxylic acid $\underline{10}^{20}$ by direct lactonization or through iodolactonization procedure.

Various attempts to obtain $\underline{7}$ (or its epimer at C-4) directly from $\underline{3}$ by Markownikoff hydration of double bond through classical oxymercuration-demercuration (OM-DM) procedure 23 (mercuric acetate in $\mathrm{H}_{2}\mathrm{O}$ -THF) were unsuccessful.

The lack of reactivity of <u>3</u> was absolutely unpredictable as OM-DM of trisubstituted cyclopentene double bonds (e.g. 2,4,5-trimethylcyclopentene and 3-methyl-cis-bicyclo[3.3.0] oct-2-ene bicyclo[3.3.0] oct-2-ene bicyclo[

This failure however could hide a positive aspect. In fact if the cyclopentene allylic 1,4-diol system of $\underline{5}$ would retain its unreactivity towards OM-DM also in the parent iridoid $\underline{1}$, it could be possible to guess a chemoselective OM-DM reaction of the only enol-ether double bond of aucubin $\underline{1}$, with results of predictable practical interest.

We are investigating at present the OM-DM reaction of $\underline{1}$ and the first results will be next published.

15

14

13

REFERENCES AND NOTES

- 1. Abstracted in part from the "Dottorato di Ricerca" Thesis of E.D., Rome University, 1984-86.
- Present address: Eni Ricerche Spa., Via Ercole Ramarini 32, 00015 Monterotondo, Italy.
- 5. C.Bonini, C.Iavarone, C.Trogolo, and R. Di Fabio, J. Org. Chem., 1985, 50, 958.
- 4. E.Davini, C.Tavarone, C.Trogolo, P.Aureli, and B.Pasolini, Phytochemistry, 1986, 25, 2420.
- 5. R.Bernini, E.Davini, C.Iavarone, and C. Trogolo, J. Org. Chem., 1986, 51, 4600.
- 6. E.Davini, C.Iavarone, and C.Trogolo, Phytochemistry, 1987, 26, 1449.
- C.Bonini, R.Di Fabio, C.Iavarone, and C.Trogolo, <u>Ital. Pat. Appl.</u>, 1981, 49042
 A/81.
- 8. A.Bianco, M.Guiso, C.Iavarone, P.Passacantilli, and C.Trogolo, <u>Tetrahedron</u>, 1977, 33, 851.
- R.Nishida, T.C.Baker, W.L.Roeloffs, and T.E.Acree, "Abstract of Papers", 186th National Meeting of the American Chemical Society, Washington DC, Aug.28-Sept.
 1983; American Chemical Society: Washington DC, 1983; AGFD 100.
- 10. S.O.Satler and K.V.Thimann, C. R. Acad. Sc. Paris, t293, 1981, 735.
- 11. (a) E.Demole, E.Lederer, and D.Mercier, Helv. Chim. Acta, 1962, 45, 675.
 - (b) J. Weda and J. Kato, Plant Physiol., 1980, 66, 246.
 - (c) T. Yamanishi, M. Kosuge, Y. Tokimoto, and R. Maeda, Agric. Biol. Chem., 1980, 44, 2139.
- 12. For comparative reasons, the carbon numbering of compounds was the same as for cyclopentenetetrol 3.8
- 13. (a) H.Z.Sable, T.Anderson, B.Tolbert, and T.Posternak, Helv. Chim. Acta, 1963, 46, 1157.
 - (b) G.Berti, "Topics in Stereochemistry", vol.7, ed. by E.L.Eliel and N.L.Allinger, Wiley-Interscience, New York, 1972, p.135.
- 14. 1 H-nmr (300 MHz, CDCl₃): δ 4.91 (d, 1H, H-1, J_{1,5}= 9.0 Hz), 4.51 (d, 1H, H_A-4', J_{AB}= 12.0 Hz), 4.21 (octet, 2H, 2H-3', AB part of an ABX), 4.06 (d, 1H, H_B-4', J_{AB}= 12.0 Hz), 4.03 (dt, 2H, 2H-2"), 3.69 (s, 1H, H-5), 2.63 (d, 1H, H-3),2.20 (m, 1H, H-2), 2.10-2.03 (12H, 4 AcO signals), 1.69 (q, 2H, 2H-2', J = 9.0 Hz); 13 C-nmr (75 MHz, CDCl₃): δ 78.51 (d, C-1), 70.40 (s, C-4), 62.70 (d, C-5),62.50 (t, C-4'), 60.20 (t, C-2"), 59.37 (t, C-3'), 39.62 (d, C-3), 36.43 (d, C-2), 26.64 (t, C-2'); AcO signals: 171.20, 170.79, 170.30 (C=0) and 20.97, 20.61 (CH₃).
- 15. 1 H-nmr (300 MHz, D_{2} 0): δ 3.91 (sextet, 1H, H-1, J = 3.6 Hz), 3.65-3.40 (m, 6H, 2H-2", 2H-3', 2H-4'), 2.26 (p, 1H, H-2, J = 6.9 Hz), 2.16 (dd, 1H, H_{B} -5, J_{AB} = 15.0 Hz, $J_{1,5B}$ = 8.4 Hz), 2.05 (bq, 1H, H-3), 1.59 (m, 2H, 2H-2'), 1.43 (dd,

- 1H,H_A-5, J_{AB} = 15.0 Hz, $J_{1,5A}$ = 4.5 Hz); ¹³C-nmr (75 MHz, D_{2} 0): δ 83.02 (s, C-4), 76.67 (d, C-1), 66.71 (t, C-4'), 61.73 (t, C-2"), 58.53 (t, C-3'), 52.25 (d, C-3), 45.91 (d, C-2), 44.25 (t, C-5), 31.34 (t, C-2').
- 16. D.P.Strike and H.Smith, <u>Tetrahedron Lett.</u>, 1970, 4393; J.E.Pike, F.H. Lincoln, and W.P. Schneider, <u>J. Org. Chem.</u>, 1969, <u>34</u>, 3552.
- 17. 1 H-nmr (300 MHz, CDCl₃): δ 7.66 (dd, 1H, H-1, $J_{1,5} = 6.3$ Hz, $J_{1,2} = 2.4$ Hz),6.23 (dd, 1H, H-5), 4.2-3.8 (m, 4H, 2H-2", 2H-3"), 2.91 (t, 1H, H-2), 2.34 (m, 1H, H-3), 2.00-1.75 (m, 2H, 2H-2"), 2.04 and 2.03 (6H, 2 AcO signals); 13 C-nmr (75 MHz, CDCl₃): δ 207.13 (s, C-4), 166.41 (d, C-1), 133.57 (d, C-5), 63.04(t,C-3"), 62.35 (t, C-2"), 50.82 (d, C-3), 42.76 (d, C-2), 32.81 (t, C-2"); AcO signals: 170.88, 170.83 (C=0) and 20.94, 20.75 (CH₂).
- 18. F. Johnson, K.G.Paul, and D.Favara, <u>J. Org. Chem.</u>, 1982, <u>47</u>, 4254; <u>Germ. Pat.</u>, 1975, 2508295.
- 19. (a) S.Torii, H.Tanaka, and T.Mandai, J. Org. Chem., 1975, 40, 2221.
 - (b) S.Torii, H.Tanaka, and Y.Kobayasi, J. Org. Chem., 1977, 42, 3473.
 - (c) A.Wisser, J. Org. Chem., 1977, 42, 356.
- 20. F.Johnson, K.G.Paul, D.Favara, R.Ciabatti, and U.Guzzi, J. Am. Chem. Soc., 1982, 104, 2190.
- 21. P.A.Grieco, N.Fukamiya, and M.Miyashita, J. Chem. Soc. Chem. Comm., 1976, 573.
- 22. H.L.Slates, Z.L.Zelawski, D.Taub, and N.L.Wendler, Tetrahedron, 1974, 30, 819.
- 23. H.C.Brown and P.J.Geoghegan jr., J. Org. Chem., 1970, 35, 1844.
- 24. H.C.Brown, G.J.Lynch, W.J.Hammar, and L.C.Liu, J. Org. Chem., 1979, 44, 1910.
- 25. H.C.Brown and W.J.Hammar, Tetrahedron, 1978, 34, 3405.
- 26. H.C.Brown and G.J.Lynch, J. Org. Chem., 1981, 46, 531.

Received, 31st August, 1987