2-t-BUTYL-5-CHLORO-6-NITROBENZOXAZOLE: A PRACTICAL SYNTHETIC INTERMEDIATE FOR 4-ARYLOXY-5-NITRO-2-AMINOPHENOLS

Mitsunori Ono*, Katsuyoshi Yamakawa, Hidetoshi Kobayashi, and Isamu Itoh

Research Laboratories, Ashigara, Fuji Photo Film Co., Ltd., Minami-ashigara, Kanagawa 250-01, Japan

Abstract—— On the examination of the anomalous reactivities of several nitrobenzoxazole derivatives <u>2a-e</u> toward acids and bases it has been found that 2-t-butyl-5-chloro-6-nitrobenzoxazole <u>2c</u> serves as one of the most convenient and practical synthetic intermediates for 4-aryloxy-5-nitro-2-aminophenols.

Although 4-aryloxy-5-nitro-2-aminophenols $\underline{1}$ are useful compounds, particularly for preparing colour photographic materials, 1 chelating dyes, 2 thermal-transfer-recording materials, 3 and bactericides, 4 any standard procedure leading to $\underline{1}$ has not been reported in the literature. In order to develop a practical synthetic intermediate for $\underline{1}$, 2-substituted 5-chloro-6-nitrobenzoxazoles $\underline{2a}$ - \underline{e} were prepared, 5 and both introduction reaction of the aryloxy group and hydrolysis of the oxazole ring were examined. The results are presented in this communication.

Nucleophilic aromatic substitution of 2

The behavior of $\underline{2}$ in the S_N^{Ar} reaction with aryloxy anions was dependent on the nature of the substituent at the C-2 position of $\underline{2}$. For instance, treatment of $\underline{2a}$ and 2b with sodium p-methoxyphenoxide in DMF gave a complex mixture, no expected

p-methoxyphenoxy derivative $\underline{3}$ being detected. The same treatment, in the case of $\underline{2e}$, resulted in the reduction on chlorine atom at the C-5 position, giving $\underline{2f}$ in 62 % yield. Moreover, $\underline{2b}$ when treated with sodium p-methoxyphenoxide in THF at room temperature for several minutes and then quenched with diluted HCl afforded the dimer $\underline{7}$ as orange crystals (mp 238-240 °C) in 81% yield. The structure was assigned on the basis of the following spectral data: MS: m/z 425 (M+1) and 423 (M-1); IR (Nujol) 3360, 1645, 1615, 1600, and 1270 cm⁻¹; UV/VIS λ_{max} (EtOH) 418 nm (ϵ =31200); $\lambda_{\text{H-NMR}}$ (400 MHz, CDCl $_3$) λ_{E} 2.42 (s, 3H, CH $_3$), 5.67 (s, 1H, C-10-H), 7.63 (s, 1H, C-4-H), 7.67 (s, 1H, C-18-H), 7.87 (s, 1H, C-7-H), 8.48 (s, 1H, C-15-H), and 10.73 (s, 1H, OH). Anal. Calcd for λ_{C} 110 M $_3$ 120 Cl $_3$ 2: C, 45.20; H, 2.37; N, 13.18; Cl, 16.68%; Found: C, 45.06; H, 2.30; N, 13.07; Cl, 16.53%. A plausible pathway leading to the dimer λ_{C} 13 depicted in Scheme 1: The unstable intermediate λ_{C} would be formed by the initial attack of the anion λ_{C} to the C-2 position of the oxazole ring, and the subsequent ring cleavage would produce λ_{C} , which underwent a double bond isomerization to afford 7.

Scheme 1.

2b

NaO-OCH₃

THF

$$O_2N$$
 O_2N
 O_2N

In view of general reactivity of the oxazole ring toward weak bases (nucleophiles) without any special electrophilic assistance, 6 these phenomena are unusual 7 and interesting. As shown in Table 1, successful introduction of the aryloxy group at the C-5 position of 2 was observed only in the case of 2 possessing 4 -butyl

substituent on the C-2 position.

Table 1

Run	Y	Conditions	Yield	of <u>8</u>	Run	Y	Conditions	Yield	of <u>8</u>
1	O-OCH ₃	NaOH(1.0 equiv DMF/toluene/80 3 h.		92%	5	Ö- Co ₂ 0	NaOH(1.0 equi CuCl(0.5 equi DMF/toluene/80 CH ₃ 4 h.	v.)	36%
2	О́- Сн ₃	NaOH(1.0 equiv DMF/toluene/12 3 h.		88%	6	o- ct _{C4} H _c	NaOH(1.0 equiv DMF/toluene/14 4 h.		89%
3	0- C1	KOH(1.0 equiv. CuCl(0.5 equiv DMF/80 °C/4 h		60%	7	(N)	DMF/100 °C/4 1	h	93%
4	So ₂ -bi	KOH(1.0 equiv. CuCl(0.5 equiv DMF/100 °C/4 h phenyl	.)	40%	8	S- C ₁₂ F	NaOH(1.0 equitoluene/115 °C 3 h.		75%

Hydrolysis of the oxazole ring of 8

In the subsequent hydrolysis of the oxazole ring of $\underline{8}$, contrary to the expectation, all attempted usual acidic cleavage⁸ [(a) HBr / EtOH, reflux (b) aq. CF_3SO_3H , reflux (c) H_2SO_4 / AcOH, reflux (d) H_2SO_4 , reflux] failed. However, treatment of $\underline{8}$ (1.0 equiv.) with KOH (4.0 equiv.) in EtOH under reflux for several hours effected hydrolysis of 8 to give the corresponding aminophenol derivatives $\underline{9}$ in 85-93% yield.

$$O_{2}N \xrightarrow{\text{tC}_{4}H_{9}} N \xrightarrow{\text{KOH}} O_{2}N \xrightarrow{\text{OH}} NH_{2}$$
8 9

In order to estimate this unexpected pH dependence in the hydrolysis of $\underline{8}$, the pseudo-first order rate constants $(k_1 \text{ and } k_2)$ were determined in the hydrolytic cleavage of model compounds $\underline{10}$ and $\underline{11}$. The pH dependence of the hydrolysis of $\underline{10}$ and $\underline{11}$ in buffered 50% aqueous 2-propanol over the pH range 2.5-12.5 are plotted in Fig. 1 and 2. The pH-rate (k_1) profiles for $\underline{10c}$ - \underline{d} indicate that the formation of amidophenols $\underline{11c}$ - \underline{d} is enhanced in rather higher alkaline region, respectively.

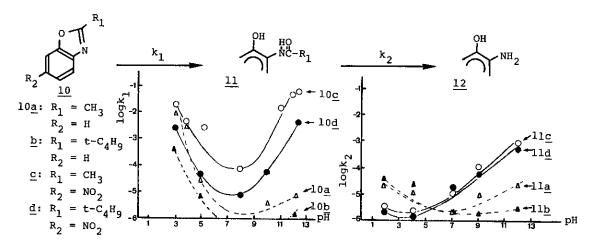


Fig. 1 Logarithmic plot of the pseudo-first order rate constants (k_1) as a function of the pH of the buffer solution. (80°)

Fig. 2 Logarithmic plot of the pseudo-first order rate constants (k₂) as a function of the pH of the buffer solution. (80°)

Furthermore, those (k_2) for $\underline{11}$ in Fig. 2 clearly show the presence of the nitro substituent in $\underline{11c}$ -d serves to enhance the hydrolytic cleavage of the amide group by approximately 100-fold at higher alkaline region relative to lower acidic one. These observations are consistent with the result obtained in the case of $\underline{8}$ and in striking contrast with those in the case of usual oxazoles and amidophenols (e.g. $\underline{10a}$ -b and $\underline{11a}$ -b). Thus, we have shown 2-t-butyl-5-chloro-6-nitrobenzoxazole $\underline{2c}$ serves as a practical synthetic intermediate for $\underline{1}$ on the examination of the anomalous reactivities of 2-substituted 6-nitrobenzoxazole derivatives.

REFERENCES AND NOTE

- 1. I. Itoh and H. Kobayashi, Japan Kokai, 61-65241 (1986).
- L. S. Hegedus, R. R. Odle, P. M. Winton, and P. P. Weider, <u>J. Org. Chem.</u>, <u>47</u>, 2607 (1982).
- 3. T. Niwa, Y. Murata, and S. Maeda, Japan Kokai, 60-180889 (1985).
- B. Loev, H. Jones, R. E. Brown, F. C. Huang, A. Khandwala, J. Mitchell,
 P. Somnino-Goldman, J. Med. Chem., 28, 24 (1985).
- 5. L. E. Beavers, P. T. S. Lau, and I. F. Salminen, Japan Kokai, 47-21139 (1972).
- E. J. Corey and D. L. Boger, <u>Tetrahedron Lett.</u>, 1978, 5; S. Florio, <u>Tetrahedron</u>, 40, 5089 (1984).
- 7. P. F. Jackson, K. J. Morgan, and A. M. Turner, <u>J. Chem. Soc., Perkin II</u>, 1972, 1582.
- A. Bruylants and E. Feytmants-de Medicis, "The Chemistry of the Carbon-Nitrogen Double Bond," S. Patai ed, John Wiley & Sons, 1970.
- 9. The authors wish to thank Miss Haruko Shimizu for carrying out the kinetic determinations.

Received, 16th December, 1987