SELECTIVE SYNTHESIS OF 1-ALKOXYCARBONYLOXYMETHYL-5-FLUOROURACILS VIA 1,3-BIS(HYDROXYMETHYL)-5-FLUOROURACIL¹

Toshio Nagase,* Kazuto Shiraishi, Yutaka Yamada, and Shoichiro Ozaki* Faculty of Engineering, Ehime University, Bunkyo-cho, Matsuyama 790, Japan

<u>Abstract</u> — Esterification of 1,3-bis(hydroxymethyl)-5-fluorouracil with various alkyl chloroformates in the presence of tert- or hindered secalkylamine selectively gave potentially antitumor active 1-alkoxycarbonyloxymethyl-5-fluorouracils in moderate to good yields.

During our studies on masked 5-fluorouracil derivatives, it was found that 1-acyloxymethyl-5-fluorouracils (<u>1</u>) had the stronger antitumor activity and the weaker toxicity.² This time we planned to prepare 1-alkoxycarbonyloxymethyl-5-fluorouracils (<u>2</u>) with the aim of obtaining less toxic derivatives than <u>1</u>. Since direct alkylation of 5-fluorouracil are known to be non-site specific reaction,³ we investigated the selective esterification of 1,3-bis(hydroxymethyl)-5-fluorouracil (<u>3</u>)¹ with alkyl chloroformates.

At first, $\underline{3}$ was treated with 1.0-1.2 eq of benzyl chloroformate in pyridine at room temperature to afford a mixture of 1-, 3-, and 1,3-bis(benzyloxycarbonyloxymethyl)-5-fluorouracils ($\underline{4}$, $\underline{5}$, and $\underline{6}$) in 11, 11, and 6% yields, respectively. Even if the reaction was carried out with 1.27 eq of pyridine or 2,6-lutidine, products were also a mixture of $\underline{4}$, $\underline{5}$, and $\underline{6}$. When triethylamine (1.27 eq) was used as a base in place of pyridine, however, no trace of $\underline{5}$ was detected in the reaction mixture. After usual work-up, 85% yield of $\underline{4}$ accompanied with 7% yield of $\underline{6}$ was isolated. Using other tert-amines, for examples, ethyldiisopropylamine (EDA) and N,N-dimethylaniline, or hindered sec-amine (diisopropylamine) gave only 1-substituted compound $\underline{4}$ and a small amount of bis-compound $\underline{6}$ (see Table 1).

Table 1. Preparation of N-(Benzyloxycarbonyloxymethyl)-5-fluorouracils.

base	(eq)	yield (%) ^a		base	(eq)	yield (%) ^a				
		4	5	<u>6</u>			4	5	6	
	(excess) ^b	11	11	6	EDA	(1.20)	68	_c	11	
	(1.27)	13	47	23	Et ₃ N	(1.27)	85	_c	7	
M	(1.27)	24	17	14		(10)	9	9	_c	
NaHCO ₃	(1.27)	49	5	5	ⁱ Pr ₂ NF	I (1.25)	75	_c	8	
PhNMe ₂	(1.20)	11	- ^c	1						

a: Isolated yield based on 5-fluorouracil after usual work-up and separation.

b: Pyridine was used as a solvent.

c: No product was obtained after usual work-up nor detected on TLC in the reaction mixture.

Subsequently, in order to examine whether bis-compound $\underline{6}$ was decomposed to $\underline{4}$ or $\underline{5}$ under the present reaction conditions, $\underline{6}$ was treated with various amines in acetonitrile at room temperature but in case of triethylamine, EDA, diisopropylamine, and pyridine no reaction occurred (Table 2).⁴ In contrast $\underline{6}$ was treated with imidazole

base	(eq)	reaction time	yield (%) ^a		
			4	<u>5</u>	<u>6</u> (recovery)
Ŵ	(10)	2 days	-	-	100
Et ₃ N	(10)	2 days	-	-	100
PhNMe 2	(5)	2 days	-	-	100
NH3 ^b	(16)	7 days	7	56	с
28% aq.NH ₃	(10)	l day	4	35	с
N^NH	(5)	5 days	-	99	-
ⁱ PrNH ₂	(10)	1 h	-	11	с

Table 2. Stability of Compound 6 under Basic Conditions.

a: Isolated yield; b: Use the saturated dry ethanol solution of dry ammonia gas; c: 5-Fluorouracil was detected in the reaction mixture but not isolated. (5 eq) at room temperature for 5 days to afford 3-substituted compound 5 selectively. This degradation of the N-1 substituent will become a promising route for the selective synthesis of 3-substituted compounds like 5.

According to the above experimental results, highly site-selective substitution of the present procedure could be explained as follows: In case of the effective base (triethylamine, EDA, diisopropylamine) $\underline{3}$ was activated enough to react with chloroformate at the N-1 position to afford $\underline{4}$. In the later stage of the reaction, the resulting $\underline{4}$ reacted with the remained benzyl chloroformate at the N-3 position to give bis-substituted compound $\underline{6}$ as a minor product. When pyridine or 2,6-lutidine was used as a base, the low basicity of these bases could not smoothly complete the desired alkoxycarbonylation, while the decomposition of the hydroxymethyl group of $\underline{3}$ into formalin and NH group competitively occurred.⁵ Therefore the use of pyridine or 2,6-lutidine decreased the yield and the selectivity of the present alkoxycarbonylation. Details of the chemical properties of the hydroxymethyl group of $\underline{3}$ is now under investigation.

Following the conditions described above, $\underline{3}$ was allowed to react with various alkyl chloroformates. In all cases 3-substituted derivatives like $\underline{5}$ were not detected in the reaction mixture. Results are summarized in Table 3. All 1-alkoxycarbonyloxymethyl-5-fluorouracils have moderate antitumor activity against leukemia L-1210.⁶ Further experiments of antitumor activity are under way.

	Tabl	le	3.	Preparation	of	Other	1-Alkoxycarbonyloxymethyl-5-fluorouracils
--	------	----	----	-------------	----	-------	---

R	yield	1 (%) ^a	R	yield (%) ^a	
	<u>7</u>	<u>8</u>		7	8
\bigcirc	65	3	Et	47	17
\diamond	65	19	n-C ₁₆ H ₃₃	62	16
sec-Octyl	59	3	Ме ^_/	68	20

a: Isolated yield based on 5-fluorouracil, not optimized.

In conclusion, the present method affords 1-alkoxycarbonyloxymethyl-5-fluorouracils without a trace amount of 3-substituted derivatives even if the procedure involves esterification of the bifunctional intermediate, 1,3-bis(hydroxymethyl)-5-fluorouracil.

Direct alkylation and acylation of 5-fluorouracil are known to non-site specific reaction,³ and, moreover, selective (mono) esterification of $\underline{3}$ with acid halides and acid anhydrides has not been reported, therefore these results seem to be worth noting.

REFERENCES AND NOTES

- 5-Fluorouracil Derivatives. XIV. Part XIII: S. Ahmad, S. Ozaki, T. Nagase, M. Iigo, and A. Hoshi, <u>Chem. Pharm. Bull.</u>, 1987, <u>35</u>, 4137.
- Antitumor activity: A. Hoshi, M. Inomata, F. Kanzawa, M. Iigo, and K. Kuretani, <u>J.</u> <u>Pharm. Dyn.</u>, 1982, <u>3</u>, 208; synthesis: S. Ozaki, Y. Watanabe, T. Hoshiko, H. Mizuno, K. Ishikawa, and H. Mori, Chem. Pharm. Bull., 1984, <u>32</u>, 733.
- 3. For example, H. Nomura, Y. Yoshioka, and I. Minami, <u>Chem. Pharm. Bull.</u>, 1979, <u>27</u>, 899.
- 4. Compound <u>3</u> was easily soluble in pyridine and acetonitrile, and slightly in dichloromethane. In the present work acetonitrile was used as a solvent without any description in the text.
- 5. Decomposition of <u>3</u> into 5-fluorouracil could be observed under the reaction conditions by use of pyridine or lutidine as a base. Two elimination mechanisms of formalin from <u>3</u> are considered. The first one is a base-induced mechanism. This is supported the following data: When <u>3</u> was stirred in the presence of 1.27 eq of pyridine in dry acetonitrile at room temperature for 13.5 h, and then treated with benzyl chloroformate, the yields of <u>4</u>, <u>5</u>, and <u>6</u> were 19, 18, and 17%, respectively. On the other hand, a proton-induced mechanism is also presumed because of the presence of pyridinium or lutidinium chloride in the reaction mixture. A small amount of proton deprotonated from onium salt may accelerate the degradation of N-C bond of <u>3</u>. However, the exact mechanism can not be decided by the present experimental data. Further investigations are in progress.
- 6. A. Hoshi, personal communication. All the new compounds show the reasonable ¹H-NMR, IR, and elemental analysis (C,H,N) data supported the proposed structures.

Received, 28th January, 1988