STRUCTURE AND STEREOCHEMISTRY OF CORYTENSINE, A NEW PHYHALIDEISOQUINOLINE ALKALOID FROM CORYDALIS OCHOTENSIS

Tian-Shung Wu^{a*} , Shiow-Chyn Huang^a, Sheng-Teh Lu^b, Yang-Chang Wu^{b} , Donald R. McPhail^c, Andrew T. McPhail^c, and Kuo-Hsiung Lee^d

- a. Department of Applied Chemistry, Providence College of Arts and Sciences, Shalu 43309, Taichung Hsien, Taiwan, R.O.C.
- b. School of Pharmacy, Kaohsiung Medical College, Kaohsiung 80731, Taiwan, R.O.C.
- c. Department of Chemistry, Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706, U.S.A.
- d. Natural Products Laboratory, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27514, U.S.A.

<u>Abstract</u>- A new phthalideisoquinoline alkaloid, corytensine, has been isolated from <u>Corydalis</u> ochotensis <u>Turcz</u>., and its structure and stereochemistry have been established as <u>(1)</u> from spectral data and a single crystal X-ray analysis.

In previous paper¹, we reported the isolation and structural elucidation of several new alkaloids from <u>Corydalis ochotensis Turcz</u>. We now describe the structural elucidation of a further new phthalideisoquinoline alkaloid, corytensine, isolated from the whole herb of the same plant which was collected at Nan-Tou, Taiwan.

Corytensine (1) was isolated as colorless prisms², mp 215-215.5 $^{\circ}$ C (Me₂CO), [α] $_{D}^{25}$ +168 $^{\circ}$ (c =0.5, CHCl₃). Elemental analysis established the molecular formula as $C_{20}H_{19}NO_{6}$. An absorption band at 239 nm (loge 3.91) and a characteristic tetrahydroisoquinoline band at 290 nm (end absorption) in the uv spectrum of 1 were very similar to those of (+)-egenine (2)³(With undefined stereochemistry at C-7') and (-)-narcotinehemiacetal (3). The ir spectrum of 1 showed a hydroxy absorption at 3400 cm⁻¹. Salient features of its 1 H-nmr (400 MHz, CDCl₃) spectrum were the presence of an N-methyl singlet at $^{\bullet}$ 1.96 (3H), four mutually coupled resonance at $^{\bullet}$ 2.47 (1H,dt, J=15.5 and 3.0 Hz, H-4eq), 2.54 (1H, ddd, J=13.0, 10.5, and 3.0 Hz, H-3ax), 3.00 (1H, dt, J=10.5 and 3.0 Hz, H-3eq), and 3.20 (1H, ddd, J=15.5, 13.0, and 3.0 Hz, H-4ax). Two one-proton benzylic signals for H-1 and H-9 appeared as singlets at $^{\bullet}$ 3.68 and 5.29 thereby indicating a dihedral angle of $^{\bullet}$ 2.90° between these atoms. Signals for two methylenedioxy groups occurred at $^{\bullet}$ 5.90 and 5.94 (each 1H, d, J=1.7 Hz),

and 6.04 and 6.08 (each 1H, d, J=1.5 Hz). An AB quartet at 66.83 and 6.85 (J=8 Hz) was assigned to two ortho-related aromatic ring protons (H-2' and H-3'). Other one-proton singlets which appeared at 66.25, 6.60 and 6.71 were attributed to H-7', H-5, and H-8, respectively. A singlet at 66.25 in the 1 H-nmr spectrum and a carbon resonance at 697.7 in the 13 C-nmr spectrum indicated the presence of a hemiacetal system. The EI mass spectrum lacked a molecular ion peak but contained instead of several small peaks at m/z 370 (M+1) $^{+}$, 368 (M-1) $^{+}$, and 352 (M-17) $^{+}$; the base peak, which occurred at m/z 190, was due to the familiar benylic cleavage of phthalideisoquinolines. The foregoing spectral data led to the assignment of structure $\underline{1}$ to corytensine.

The complete structure and relative stereochemistry of corytensine were defined unequivocally by noe studies (Table 1) and a single-crystal X-ray analysis. Crystal data: $C_{20}H_{19}NO_{6}$ (1), M = 369.38, orthorhombic, space group $P_{12}^{2}_{12}^{2}_{1}$, a = 12.936(2) A, c = 7.649(1) A, U = 1684.1 A, D_{calcd} = 1.457 g cm⁻³, μ (Cu-Ka radiation, = 1.5418 A) = 8.6 cm⁻¹. One octant of intensity data (1737 reflections) was recorded from a crystal of dimensions ca. 0.40 x 0.40 x 0.60 mm mounted on an Enraf-Nonius CAD-4 diffractometer (Cu-Ka radiation, incident-beam graphite monochromator; ω -28 scans, θ_{max} . =67°). The data were corrected for the usual Lorentz and polarization effects. The crystal structure was solved by direct methods. Initial non-hydrogen atom positions were obtained from an

Table 1. ${}^{1}\text{H-Nmr}$ Chemical Shift (8) and NOE Data for Corytensine (1)

roton irradiated	Proton observed	% Area increase
N-Me (1.96)	H-1 (3.68)	8.8
	H-3ax (2.54)	4.5
	H-3eq (3.00)	4.5
H-1 (3.68)	H-9 (5.29)	4.2
	H-8 (6.71)	5.8
	N-Me (1.96)	5.6
	H-2' (6.83)	2.8
н-9 (5,29)	H-1 (3.68)	3.4
	H-8 (6.71)	7.1
	н-2' (6.83)	2.9
H-7' (6.25)	no n0e	

Figure 1. Structure and solid-state conformation of corytensine $(\underline{1})$; small circles denote hydrogen atoms.

E-map. Hydrogen atoms were all located in a difference Fourier synthesis evaluated following several rounds of full-matrix least-squares adjustment of nonchydrogen atom positional and anisotropic temperature factor parameters. With the inclusion of hydrogen atom positional and isotropic thermal parameters as variables in the final least-squares iterations, the refinement converged at $\underline{R} = 0.035$, $\underline{R}_{\underline{W}} = 0.053$) over 1684 reflections with $\underline{I} > 3.0 \sigma(\underline{I})$. A view of the solid-state conformation is presented in Figure 1.

Corytensine ($\underline{1}$) is the C-7' epimer of (+)-egenine ($\underline{2}$). Accordingly, the results of the present study now allow the complete relative stereochemistry of the latter to be defined as shown. Moreover, assuming that their absolute configuration at C-1 is \underline{S} as in all classical phthalideisoquinolines exhibiting a positive specific rotation, the absolute stereochemistries of both $\underline{1}$ and $\underline{2}$ must also be as represented.

ACKNOWLEDGEMENT

We thank the National Science Council of the Republic of China (NSC76-0201-M126C-06) for financial support. We are also indebted to Drs. M. Niwa and M. Haruna (Meijo University, Japan) for recording the high resolution mass spectrum and the nOe spectral data.

REFERENCES AND NOTES

- 1. Part VIII in the series "Studies on the Alkaloids of Formosan Corydalis Species". For part VII, see T.-S. Wu, S.-C. Huang, S.-T. Lu, and Y.-C. Wu, <u>J. Chinese Chem. Soc.</u>, 34, 157 (1987), and references cited therein.
- 2. The yield of $\underline{\mathbf{1}}$ is 0.001% from the whole herb. irv $_{\mathrm{max}}^{\mathrm{KBr}}$ cm $^{-1}$: 3400, 1505, 1490, 1475; HRMS: Calcd for $\mathrm{C_{20}H_{19}NO_6}$ 368.1132 (M-1) $^+$, Found, 368.1124; Calcd for $\mathrm{C_{20}H_{20}NO_6}$ 370.1290 (M+1) $^+$, Found, 370.1308; Anal. Calcd for $\mathrm{C_{20}H_{19}NO_6}$: C, 65.03; H, 5.19; N, 3.79. Found: C,64.74; H, 5.17; N, 3.70; EIMS $\mathrm{m/z}$: 370 (M+1) $^+$, 368, 352, 190(100%), 188, 178, 175, 162, 149, 132; CIMS $\mathrm{m/z}$: 370(M+1) $^+$, 192, 190(100%), 179, 163; $^{13}\mathrm{C-nmr}$ (CDCl $_3$, 25 MHz): 6 148.2(s), 146.3(s), 146.1(s), 141.6(s), 135.2 (s), 130.5(s), 128.6(s), 124.1(s), 113.8(s), 108.9(d), 108.1(d), 106.8(d), 101.8(t), 100.8(t), 97.7(d), 89.7(d), 68.5(d), 53.8(t), 46.7(q), 29.2(t); CD Ae(nm)(MeOH): +0.254(302), +0.169(297), +0.505(283), +0.169(257), +3.56(231.5), +0(221), -5.17(213).
- 3. B. Gozler, T. Gozler, and M. Shamma, Tetrahedron, 39, 577 (1983).
- 4. G. Sariyar and M. Shamma, Phytochemistry, 25, 2403 (1986).
- 5. Crystallographic calculations were performed on PDP11/44 and MIcroVAX II computers by use of the Enraf-Nonius Structure Determination Package incorporating the direct methods program MULTAN11/82.
- 6. $\underline{R} = \sum ||\underline{F}_0|| |\underline{F}_C|| / \sum |\underline{F}_0|| : \underline{R}_{\mathbf{w}} = \sum |\underline{F}_C|| |\underline{F}_C||^2 / \sum |\underline{F}_0|^2 ||\underline{F}_0||^2 |$
- For a listing of spectral data for phthalideisoquinoline alkaloids, see G. Blaskó, D. J. Gula, and M. Shamma, J. Nat. Prod., 45, 105 (1982).

Received, 8th February, 1988