NMR SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY OF BENZO [a]QUINOLIZIDINES Mario Rubiralta, Anna Diez, and Joan Bosch Laboratory of Organic Chemistry, Faculty of Pharmacy University of Barcelona, 08028 Barcelona, Spain Miguel Feliz^a and Xavier Solans^b a. Department of Organic Chemistry, Faculty of Chemistry University of Barcelona, 08028 Barcelona, Spain
b. Department of Crystallography, Faculty of Geology University of Barcelona, 08028 Barcelona, Spain

Abstract- A series of 9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-2Hbenzo (a) quinolizines 1-10 has been studied by nmr spectroscopy using two-dimensional techniques. The crystal structure of benzo-[a] quinolizidines 1 and 4 has been determined by X-ray analysis.

In a previous work¹ we have described a new synthetic entry to the benzo[a]quinolizidin-2-one ring system prepared by the cyclization of 2-(3,4-dimethoxypheny1)-4, 4-ethylenedioxy-1-piperidineacetaldehydes followed by reduction of the resulting 7hydroxy derivatives and hydrolysis of the acetal function. Benzo[a]quinolizidin-2one 2 is a well known synthetic intermediate² of Ipecac alkaloids, such as emetine. However, in spite of the numerous studies about the synthesis and reactivity of benzo [a]quinolizidines,^{3,4} a few studies of this ring system by ¹H nmr have been reported so far. This technique has been usually used to assign the C-11b methine proton since its chemical shift value and its coupling constants allow the determination of the B/C ring junction.⁶

In this paper we report the study of the proton nmr spectra of benzo[a]quinolizidines $1-10^{1}$ by two-dimensional nmr spectroscopy of homo- $(^{1}H-^{1}H)$ and heteronuclear $(^{13}C-^{1}H)$ correlation as well as by selective decoupling experiments.

The most significant signals of 7-hydroxyquinolizidines 3, 4, and 6 are those due to the methine protons at C-11b and C-7. Thus, 11b-H appears at $\delta v3.3$ in the α -hydroxy series and at $\delta v3.6$ in the β -hydroxy series, in both cases as a doublet of doublets ($J \ge 12$ and 2.5 Hz) which confirms both its axial disposition and the *trans* relationship of rings B and C.⁵ The relative stereochemistry at C-7 in these compounds was established from the magnitude of the coupling constants of the 7-methine proton.⁸ In addition, the presence of a pseudoequatorial hydroxy group in 3 implies a δyn relationship between 7-H and the nitrogen lone pair, which promotes a shift to a lower field ($\Delta\delta v0.3$ ppm).⁹ The change of the relative configuration at C-7 also affects the chemical shift of the aromatic 8-H proton. Thus, when the hydroxy group is pseudoaxial, the chemical shift difference between 8-H and 11-H is v0.25 ppm, while when it is pseudoequatorial this difference increases to 0.46 ppm.

Figure 2. Two-dimensional Nmr Spectrum (COSY) of Compound 4

The deshielding promoted by the pseudoequatorial hydroxy group on 8-H is in agreement with the greater steric proximity of this proton and the oxygen lone pairs (see Dreiding models).^{10,11} The remainder signals corresponding to the quinolizidine protons appear in the range of δ 1.5-3.2, showing in some cases an overlapping that makes difficult their unequivocal assignment. The complete signal assignment of quinolizidines 3, 4, and δ^{12} (Table 1) was accomplished from the 2D ¹H-¹H homocorrelated nmr spectrum of compound 4 (Figure 2). Selective proton decoupling experiments allowed the measurement of the coupling constants.

The 2D ${}^{1}H_{-}{}^{1}H$ homocorrelated nmr spectrum of 4 shows the following significant correlations: i) between the 7-H signal and the doublets of doublets at 6 2.69 and 3.05, which therefore correspond to the C-6 methylene protons. The signal at lower field is assigned to the proton *syn* with regard to the nitrogen lone pair;⁹ ii) between the signal due to the methine 11b-H and the signals centered at 6 2.27 and 1.72, thus allowing their assignment to the equatorial and axial C-1 protons, respectively; iii) between the signal centered at 6 2.89, due to the equatorial 4-H proton, and the signals corresponding to 4-Ha and 3-H.

Reduction of hydroxy derivatives 4 and 6 led to benzo[a]quinolizidines 5 and 7, respectively.¹ In both cases, the absence of the hydroxy group promotes the disappearance of the deshielding effect on 8-H. In fact, the aromatic protons resonate at δ 6.55 and 6.52 in 5 and at δ 6.59, as only one singlet, in 7. The coupling constant of the methine 11b-H (J=12 Hz) confirms its axial disposition and the *trans* relationship between rings B and C.

In these compounds, the assignment of the quinolizidine protons is more difficult due to the greater overlapping of the signals corresponding to the methylene protons at C-6 and C-7 as a consequence of the absence of the deshielding promoted by the hydroxy group. The complete assignment (Table 1) was effected from the ${}^{1}H$ - ${}^{1}H$ homonuclear correlation spectrum of compound 5 (Figure 3). The correlations between the broad doublet at δ 3.34, assigned to 11b-H, and the signals at δ 1.69 and 2.18 make evident the assignment of the latter to 1-Ha and 1-He, respectively. The greater deshielding of 1-He is due to the anisotropic effect exerted by the aromatic ring. In the same manner, 11b-H shows homobenzylic long distance correlation with the methylene protons at C-7, 13 thus allowing the assignment of the pseudoaxial 7-H at δ 2.98, cis respect to the nitrogen lone pair, and the pseudoequatorial 7-H at δ 2.62. Furthermore, correlations between the signal centered at δ 2.88, assigned to 4-He, and the signals at δ 2.50, 1.88, and 1.68 (4-Ha, 3-Ha, and 3-He, respectively), are observed. Finally, the signals of the methylene protons at C-6 have been assigned on the basis of their mutual correlation and their cross peaks with protons at the 7-position.

The interpretation of the nmr spectra of ketones §, 9, and 10 was accomplished taking into account the deshielding effect ($\Delta\delta\sim0.7$ ppm) exerted by the carbonyl group on the vicinal protons.¹⁴

Finally, the deprotection of acetals 5 and 7 under acidic conditions led to benzo[a]quinolizidin-2-ones 1 and 2, respectively.¹ The most significant signals in their ¹H nmr spectra were two singlets corresponding to the aromatic protons, two singlets due to the methoxy groups, and a doublet of doublets at δ 3.5 (J= 11-12 Hz) attributable to the axial C-11b methine proton.¹⁵ In addition, characteristic signals due to the equatorial ethyl chain are observed in the spectrum of 2. For compound 1 the remaining signals are included in the range of δ 2.4-3.3 and their complete assignment was effected by means of the homo- (¹H-¹H) and heteronuclear (¹³C-¹H) correlation spectra and by decoupling experiments. Thus, when the signal at δ 3.52 (11b-H) was irradiated, the signal centered at δ 2.47 became a broad doublet and therefore could be assigned to 1-Ha. This fits with the observed correlations between the signal of 11b-H and those due to the methylene protons at C-1. A long distance correlation between 11b-H and the methylene protons at C-7 was also observed (Figure 4). In the same manner, the homocorrelated spectrum allows the unequivocal assignment of the aromatic protons at position 11 and 8, at δ 6.66 and

Figure 3. Two-dimensional Nmr Spectrum (COSY) of Compound 5

oton		2	ю	4	ч	y	۲	2 2 2	c	e T
5 F	- 2	15	25	1 2	n 2	65	\ <mark>\</mark>	5 œ	م ې	10
cd	2.47 ddd (14, 12, 1)	2.50 dd (13, 11.5)	1.74 t (13)	1.72 t (12)	1.69 t (12)	1.58 t (12.7)	1.63 t (12)	2.46 dd (13, 12)	2.44 t ^c (12)	2.62 t ^c (11.5)
e e	2.91 ddd (14, 3, 2)	2.88 dd (13, 3)	2.06 dt (13, 2.8)	2.27 dt (12, 2.4)	2.18 dt (12, 2.5)	2.28 dd (12.7, 2.5)	2.26 dd (12, 2.6)	2.96 dt (13, 2.2)	2.94 dd (12, 3)	2.5-2.8 ^d
57	2.65-2.75 m ^d	2.6-2.8 m ^d	1.90 td (13, 5.6)	1.90 tđ (12, 5)	1.88 td (12, 5)	1.82 m	1.9 ш	2.5-2.7 m	2.55 m	2.4-2.7 m
Ð	2.42 ddd (11, 4.7, 2)		1.65 dq (13, 2.8)	1.77 m	1.68 dq (12, 2.5)		-	2.48 dq (12, 2.2)	-	1 1 1
æ	2.65-2.75 m	2.38 t (10.7)	2.82 td (13, 2.8)	2.65 td (12, 3.6)	2.50 m	2.36 t (11.4)	2.30 t (12)	2.5-2.8 m	2.48 t ^c (12)	2.68 t ^c (11.5)
e	3.27 dd (10, 4.7)	3.32 dd (10.7, 6)	2.86 ddd (13, 5.6, 2.	2.89 ddd 8) (12, 5, 2.4)	2.88 ddd (12, 5, 2.5)	2.96 dd (11.4, 4.4)	2.9-3.1 m ^d	3.36 dm (10)	3.26 dd (12, 6)	3.28 dd (11.5, 5.7)
la	2.55-2.65 m	2.6-2.8 m	2.48 dd (11.2, 7)	2.69 dd (12, 2.4)	2.44 m	2.68 dd (12, 1.9)	2.45-2.75 m	2.74 dd (12, 2.2)	2.74 dd (11.7,2.2	2.73 dd () (11.5, 5.7)
- P	3.0-3.2 m	3.0-3.2 m	3.22 dd (11.2, 4.2)	3.05 dd (12, 2.4)	2.92 m	3.06 dd (12, 2.5)	2.96-3.15 ш	3.16 dd (12, 2.2)	3.18 dd (11.7,2.2	3.40 dd () (11.5, 3.5)
la	3.0-3.2 m	3.0-3.2 ш	4.74 dd (7, 4.2)	1 1 1 1	2.98 п		2.96-3.15 m			4.75 br s (W1/2= 8)
le	2.7-2.8 m	2.6-2.8 ш	ļ	4.46 t (2.4)	2.62 m	4.44 br s ^e	2.45-2.75 m	4.54 t (2.2)	4.56 t (2.2)	
	6.58 s 6.66 s	6.56 s 6.63 s	6.99 s 6.53 s	6.87 s 6.62 s	6.55 s ^c 6.52 s ^c	6.87 s 6.60 s	6.59 s 6.59 s	6.92 s 6.57 s	6.92 s 6.58 s	6.99 s 6.50 s
Ħ	3.52 br d (12)	3.50 dd (11.5, 3)	3.58 dd (13, 2.8)	3.34 dd (12, 2.4)	3.34 br d (12)	3.30 dd ^f (12.7, 2.5)	3.36 br d (12)	3.45 dd (12, 2.2)	3.42 dd (12, 3)	3.78 dd (11.5, 4)
₩	3.83 s 3.86 s	3.83 s 3.86 s	3.84 s 3.87 s	3.86 s 3.88 s	3.77 s	3.87 s 3.88 s	3.84 s 3.86 s	3.90 s 3.85 s	3.87 s 3.91 s	3.85 s 3.89 s
1 р	1	1.90 m 1.27 m 0.96 t (7)	-			1.6-1.7 m 1.0-1.3 m 0.94 t (7)	1.6-1.7 m 1.0-1.3 m 0.94 t (7)	1	1.85 m 1.30 m 0.98 t (7	1.88 m 1.22 m)0.96 t (7)
	-	:	3.9-4.1 m	4.0-4.1	3.9-4.0 m	3.9-4.1 m	3.8-4.1 ш	*		

6.58 respectively, on the basis of the correlation between the former and the axial proton at C-7 (δ 3.0-3.2) and of the latter and 11b-H. For the assignment of the signals corresponding to the protons at positions 3, 4, and 6, the study of the heteronuclear correlation spectrum was required (Figure 5). The ¹³C nmr spectrum of compound 1 had been previously described.^{6a} In a similar manner, the homonuclear correlation spectrum of benzo[a]quinolizidin-2-one $\frac{2}{\sqrt{2}}$ (Figure 6) allowed the complete assignment of the signals.

The X-ray crystal structures determined for benzo [a] quinolizidines 1 and 4 are illustrated in their three-dimensional representation (Figure 7). In compound 4, the structure consists of two molecules in the asymmetrical unit. The differences between the geometric values of two non-symmetrical equivalent molecules are less or equal to three times the standard deviations. Ring C has a chair conformation, with average ΔC_2^{3-4} and ΔC_m^3 symmetry parameters of 11.2 and 3.4°, respectively. The aromatic ring is planar (deviations from atoms to the mean plane are less than 0.023(7)°) with 0(91), 0(01), C(92), C(11b), and C(11a) atoms in the same plane.

Figure 4. Two-dimensional Nmr Spectrum (COSY) of compound 1

The steric hindrance between the two methoxy substituents promotes the syn disposition of C(92) and C(102) atoms regarding C(8) and C(11) atoms, respectively. The C(8)-C(9)-O(91)-C(92) torsion angle is of 0.0(4)°, while the packing forces produce an average C(11)-C(10)-O(101)-C(102) torsion angle of 9.9(5)°. This conformation implies an enlargement of C(8)-C(9)-O(91) and C(11)-C(10)-O(101) bond angles to 126.0(1) and 124.9(8)°, respectively, as well as a narrowing of C(10)-C(9)-O(91) and C(9)-C(10)-O(101) bond angles to 115.4(1) and 114.3(5)°, respectively. The planarity of C(11b), C(11a), C(7a), and C(7) atoms in ring B gives to this ring a skew-chair conformation, with average ΔC_2^{5-6} and ΔC_m^7 symmetry parameters of 12.9 and 48.3°, respectively. The five-membered ring has an envelope conformation with C(23) out of the plane defined by the remaining four atoms (average $\Delta C_m^{23} = 2.3°$).

Finally, the structure of benzo[a]quinolizidin-2-one 1 consists of discrete molecules linked by van der Waals forces. The aromatic character of ring A produces that C(11b), C(11a), C(11), C(10), O(101), C(9), O(91), C(8), C(7a) and C(7) atoms are in a plane, with C(102) and C(92) atoms (-0.074(4) and -0.087(4) Å) out of this plane

Figure 5. Two-dimensional Nmr Spectrum (HETCOR) of Compound 1

and at the same side. This fact and the π -donor character of N(5) promotes a shortening of C(7)-C(6) bond length to 1.513(6) Å (average length of the remaining C(sp³)-C(sp³) bonds: 1.539(1) Å). The C(11)-C(10)-O(101)-C(102) and C(8)-C(9)-O(91)-C(92) torsion angles are of 2.6(3) and -3.5(3)°, which produces an enlargement of C(11)-C(10)-O(101) and C(8)-C(9)-O(91) bond angles to 126.0(3) and 125.5(3)°, respectively. Ring B has a half-chair conformation, with ΔC_2^{5-6} =3.2°, whereas ring C has a chair conformation, with $\Delta C_5^{5=1.1°}$, and presents N(5) and C(2) out of the plane defined by the remaining four atoms (0.718(5) and -0.470(5) Å, respectively). The remaining bond lengths have the typical values observed in the literature.¹⁶

Figure 6. Two-dimensional Nmr Spectrum (COSY) of Compound 2

EXPERIMENTAL

<u>General</u>. Nmr spectra were recorded on a Varian XL-200 spectrophotometer working at 200 MHz and 50.3 MHz, for proton and carbon, respectively. Chemical shifts are given in ppm. The ${}^{1}\text{H}{}^{-1}\text{H}$ homonuclear correlation experiments (COSY) were performed using the standard sequence,¹⁷ and 32 transients were accumulated for 256 values of evolution

Figure 7. X-Ray Drawing of Benzo a quinolizidines 1 and 4

period, with a spectral width of 1600 Hz in both dimensions. The time between transients was 2 sec, and the acquisition time was of 0.160 sec. A 512x512 points data matrix was measured with pseudoecho¹⁸ data for improved peak definition and triangular folding for improved sensitivity. The ¹³C nmr and ¹H-¹³C heteronuclear shift correlation experiments (the XCOR sequence written by D. L. Foxal, Varian, Palo Alto, was used) were recorded using a microcell (0.3 ml) and a high sensitivity ZENS probe. For the XCOR experiment 1760 transients were used for each one of the 64 values of the evolution period. The spectral width of ¹³C nmr was 5500 Hz,with an acquisition time of 0.185 and a delay of 0.900 sec. The spectral width for ¹H nmr was 2000 Hz, 2048x512 data points were used.

 $\begin{array}{l} \underline{Crystal\ data}, \quad Compound\ 1, \quad C_{15}H_{19}NO_3, \quad Fw=261.3, \quad monoclinic, \quad a=13.786(3), \quad b=7.890(2), \\ c=12.926(2)\ A, \quad \beta=104.91(2)^\circ, \quad V=1358.6(8)\ A^3, \quad P2_1/n, \quad Dx=1.277\ g\ cm^{-3}, \quad Z=4, \quad F(000)=560, \quad \lambda(Mo\ K\alpha)=0.71069\ A, \quad \mu(Mo\ K\alpha)=0.96\ cm^{-1}, \quad 288\ ^\circ K. \quad Compound\ 4, \quad C_{17}H_{23}NO_5, \quad Fw=321.4, \\ triclinic, \quad a=18.190(3), \quad b=14.082(3), \quad c=6.974(2)\ A, \quad \alpha=104.20(9), \quad \beta=101.74(2), \quad \gamma=102.78\\ (2)^\circ, \quad V=1625(1)\ A^3, \quad P1\ Dx=1.313\ g\ cm^{-3}, \quad Z=2, \quad F(000)=688, \quad \lambda(Mo\ K\alpha)=0.71069\ A, \quad \mu(Mo\ K\alpha)=1.04\ cm^{-1}, \\ 288\ ^\circ K. \end{array}$

<u>Crystallographic Measurements</u>. A prismatic crystal (0.1x0.1x0.15 mm) was selected and mounted on a Philips PW-1100 four-circle diffractometer. Unit-cell parameters were determined from 25 reflections ($4 \neq 0 \neq 12^\circ$) and refined by least-squares. Intensities were collected with graphite monochromatized Mo K α radiation, using the ω -scan technique, scan width 0.8°, scan speed 0.03° s⁻¹. 1560 Reflections were measured in the range $2 \neq 0 \neq 24.5^\circ$, 1477 of which were assumed as observed applying the conditions I \geq 2.5 $\sigma(I)$ for compound 1 and 3327 reflections in the range $2 \neq 0 \neq 25^\circ$, 3147 assumed as observed in the same conditions for compound 4. Three reflections were measured every two hours as orientation and intensity control, significant intensity decay was not observed. Lorentz-polarization but no absorption corrections were made.

		Compound	l			Compound	4
Atom	x	y	z		x	y	z
Atom C(1) C(2) O(21) C(3) C(4) N(5) C(6) C(7) C(7a) C(7a) C(8) C(9) O(91) C(9) O(101) C(102) C(11a) C(11b)	x 2760(3) 2485(3) 3106(2) 1393(3) 973(2) 241(3) 429(3) 1515(2) 1788(3) 2772(3) 3119(2) 2385(4) 3510(2) 4451(2) 5210(3) 3241(2) 2248(2) 1993(2)	y 1723(5) 1558(5) 1284(5) 1787(6) 969(5) 1508(4) 957(6) 1803(5) 1638(4) 1865(5) 1657(5) 1847(4) 2206(8) 1188(4) 986(3) 440(6) 969(4) 1187(4) 883(4)	<pre>> z 9067(3) 10112(3) 10939(2) 10080(6) 9080(3) 8108(2) 7146(3) 6166(3) 6166(3) 6136(3) 5185(3) 5132(3) 4235(2) 3255(3) 6053(3) 5919(2) 6819(3) 6997(3) 7065(3) 8131(3)</pre>	C(1) C(2) O(21) C(22) C(23) O(24) C(3) C(4) N(5) C(6) C(7) O(71) C(7a) C(7a) C(7a) C(7a) C(7a) C(7a) C(9) O(91) C(92) C(10) O(101) C(102)	x 1496(2) 1051(2) 951(2) 1309(4) 1531(4) 1512(2) 253(3) -190(3) 265(2) -206(2) 170(2) 1046(2) 1468(3) 2252(2) 2706(2) 2319(4) 265(4) 3441(2) 3864(3)	y 2778(3) 1915(3) 2306(2) 1867(7) 1034(5) 1232(2) 1371(3) 2127(3) 2875(2) 3538(3) 4172(3) 3597(2) 4597(3) 5321(3) 5747(3) 6454(2) 6787(4) 5469(3) 5959(2) 5836(5)	<pre>~ z -1341(6) -3306(6) -5020(4) -6427(9) -5752(10) -3704(4) -3154(7) -2458(6) 2495(6) 2495(6) 2495(6) 2495(6) 3875(4) 2900(6) 4801(6) 5285(6) 7097(4) 8628(7) 3804(6) 4397(5) 2893(10)</pre>
				C(11) C(11a) C(11b)	2263(2) 1442(2) 1006(2)	4750(3) 4283(3) 3486(3)	1915(6) 1445(6) -611(6)

Table 2. Fractional atomic-coordinates (x10⁴) for compounds 1 and 4.

a. Crystallographic numbering scheme, as in Figure 7

Table 3. Bond lengths (\mathring{A}) for compound 1 and 4 with e.s.d.s. in parentheses

Comp	ound 1	Compound 4		
C(1)-C(2) 1.499(5) C(2)-C(3) 1.507(6) O(2)-C(2) 1.205(5) C(3)-C(4) 1.540(6) C(4)-N(5) 1.467(4) C(6)-N(5) 1.451(5) C(6)-C(7) 1.513(6) C(7)-C(7a) 1.513(5) C(7a)-C(11a) 1.401(5) C(8)-C(7a) 1.387(5)	$\begin{array}{ccccc} C(8)-C(9) & 1.385(5) \\ C(9)-C(10) & 1.401(5) \\ O(91)-C(9) & 1.372(4) \\ C(92)-O(91) & 1.431(5) \\ C(10)-C(11) & 1.375(4) \\ O(101)-C(10) & 1.362(4) \\ C(102)-O(101) & 1.416(4) \\ C(11)-C(11a) & 1.404(4) \\ C(11a)-C(11b) & 1.526(4) \\ C(11b)-C(1) & 1.538(5) \\ C(11b)-N(5) & 1.484(4) \\ \end{array}$	$\begin{array}{ccccc} C(1) - C(2) & 1.519(4) \\ C(2) - C(3) & 1.522(6) \\ C(22) - O(21) & 1.381(9) \\ C(23) - C(21) & 1.472(12) \\ O(21) - C(2) & 1.430(5) \\ O(24) - C(2) & 1.422(6) \\ O(24) - C(23) & 1.396(8) \\ C(3) - C(4) & 1.516(7) \\ C(4) - N(5) & 1.480(4) \\ C(6) - N(5) & 1.475(5) \\ C(6) - C(7) & 1.505(5) \\ C(7) - C(7a) & 1.513(5) \\ O(71) - C(7) & 1.505(5) \\ C(7a) - C(8) & 1.401(5) \\ \end{array}$	$\begin{array}{c} C(7a)-C(11a) \ 1.400(6)\\ C(8)-C(9) \ 1.355(6)\\ C(9)-C(10) \ 1.410(6)\\ 0(91)-C(9) \ 1.365(4)\\ C(92)-O(91) \ 1.436(7)\\ C(10)-C(11) \ 1.382(4)\\ 0(01)-C(10) \ 1.371(4)\\ C(102)-0(101)1.421(8)\\ C(1102)-0(101)1.421(8)\\ C(1102)-0(101)1.516(4)\\ C(11a)-C(11) \ 1.542(6)\\ C(11b)-C(1) \ 1.542(6)\\ C(11b)-N(5) \ 1.475(5) \end{array}$	

<u>X-Ray Structure Analysis</u>. The structure was solved by direct methods, using the MULTAN 84 system of computer programs¹⁹ and refined by full-matrix least-squares method using the SHELX 76 computer program.²⁰ The function minimized was $\sum w/|Fo|-|Fc|/^2$, where w=($\sigma^2(Fo)$ +0.023 $|Fo|^2$)⁻¹. All H atoms were obtained from a difference synthesis and refined with an overall isotropic temperature factor and anisotropically the remaining atoms. The final R factor was 0.059 (wR=0.070) for all observed reflections.

ACKNOWLEDGEMENTS

We are indebted to the Fondo de Investigaciones Sanitarias (project No. 87/1252) and to the University of Barcelona (Ajuts a la Investigació, 1985) for financial support.

REFERENCES AND NOTES

- 1. M. Rubiralta, A. Diez, A. Balet, and J. Bosch, Tetrahedron, 1987, 43, 3030.
- a) H. T. Openshaw and N. Whittaker, <u>J. Chem. Soc</u>., 1963, 1461. b) C. Czántay, L. Toke, and P. Kolonits, <u>J. Org. Chem</u>., 1966, <u>31</u>, 1447. c) N. Whittaker, <u>J.</u> <u>Chem. Soc</u>. (C), 1969, 94.
- For a review on the benzo[a]quinolizidines ring system, see: F. D. Popp and R.
 F. Watts, <u>Heterocycles</u>, 1977, 6, 1189.
- 4. For the synthesis and reactions of benzo[a]quinolizidin-2-ones 1 and 2, see:
 a) A. Brossi, L. H. Chopard-dit-Jea, and O. Schnider, <u>Helv. Chim. Acta</u>, 1958, 41, 1793. b) A. Brossi and O. Schnider, <u>Helv. Chim. Acta</u>, 1962, 45, 1899. c)
 H. Bruderer, M. Baumann, M. Uskoković, and A. Brossi, <u>Helv. Chim. Acta</u>, 1964, 47, 1852. d) A. Buzas, R. Cavier, F. Cossais, J.-P. Finet, J.-P. Jacquet, G. Lavielle, and N. Platzer, <u>Helv. Chim. Acta</u>, 1977, 60, 2122. e) F. D. Popp and R. F. Watts, <u>J. Pharm. Sci</u>., 1978, 6, 871. f) J. M. Caroon, R. D. Clark, A. F. Kluge, Chi-Ho Lee, and A. M. Strosberg, <u>J. Med. Chem</u>., 1983, 26, 1426. g) R. Davis, A. F. Kluge, M. L. Maddox, and M. L. Sparacino, <u>J. Org. Chem</u>., 1983, 48, 255. h) J. C. Menéndez, G. G. Trigo, and M. M. Söllhuber, <u>Heterocycles</u>, 1986, 24, 1039. i) See also reference 1 and references cited therein.
- 5. a) M. Uskoković, H. Bruderer, C. von Planta, T. Williams, and A. Brossi, J. Am. <u>Chem. Soc</u>., 1964, 86, 3364. b) D. Tourwé, G. van Binst, and T. Kametani, <u>Org.</u> <u>Magn. Reson</u>., 1977, 9, 341. c) L. Szabó, K. Nógrádi, I. Tóth, Cs. Szántay, L. Radics, S. Virág, and E. Kanyó, <u>Acta Chim. Acad. Sci. Hung</u>., 1979, 100, 19.
- 6. For ¹³C nmr studies on benzo [a] quinolizidines, see: a) M. Sugiura, N. Takao, K. Iwasa, and Y. Sasaki, <u>Chem. Pharm. Bull</u>., 1978, 26, 1168. b) M. Sugiura, N. Takao, I. Iwasa, and Y. Sasaki, <u>Chem. Pharm. Bull</u>., 1978, 26, 1901. c) M. Sugiura, N. Takao, K. Iwasa, and Y. Sasaki, <u>Chem. Pharm. Bull</u>., 1979, 27, 3144. d) C. Kan-Fan, R. Freire, H.-P. Husson, T. Fujii, and M. Ohba, <u>Heterocycles</u>, 1985, 23, 1089. e) J. C. Menéndez and M. M. Söllhuber, <u>Heterocycles</u>, 1987, 26, 3203.
- A. Bax, "Two-dimensional Nuclear Magnetic Resonance in Liquids", Delft University Press, Delft, Holland, 1982.
- For a stereochemical analysis of 7-phenylbenzo[a|quinolizidines, see: B. C. Maryanoff, D. F. McComsey, R. J. Taylor, Jr., and J. F. Gardocki, <u>J. Med. Chem</u>., 1981, <u>24</u>, 79.
- 9. T. M. Moyenehan, K. Schofield, R. A. Y. Jones, and R. A. Katritzky, J. Chem.

Soc., 1962, 2637.

- For a similar effect in tetrahydroprotoberberines, see: D. Badía, E. Dominguez, and C. Iriondo, <u>J. Heterocycl. Chem</u>., 1986, <u>23</u>, 1599.
- 11. The steric interaction between 8-H and a pseudoequatorial substituent at C-7 in benzo[a]quinolizidin-2-ones has been previously observed.^{4f}
- 12. The assignment of nmr signals of compound 6 was corroborated from the nmr spectra of the hydrochloride: ¹H nmr (CD₃OD, 200 MHz) 1.01 (t, 3H, CCH₃), 1.2 (m, 1H, CHCH₃), 1.8 (m, 1H, CHCH₃), 2.0 (dd, J=13, 12 Hz, 1H, 1-Ha), 2.3 (m, 1H, 3-Ha), 2.74 (br d, J=13 Hz, 1H, 1-He), 3.16 (t, J=12 Hz, 1H, 4-Ha), 3.5-3.7 (m, 3H, 4-He and 6-H), 3.89 (s, 6H, OCH₃), 4.0-4.2 (m, 4H, OCH₂CH₂O), 4.42 (dd, J= 13, 3.2 Hz, 1H, 11b-H), 4.93 (t, J=2.6 Hz, 1H, 7-He), 6.79 (s, 1H, 11-H), 7.06 (s, 1H, 8-H); ¹³C nmr (CDCl₃+CD₃OD) 9.5 (CH₂CH₃), 16.5 (CH₂CH₃), 36.3 (C-1), 41.4 (C-3), 54.1 and 54.5 (OCH₃), 55.9 (C-6), 59.9 (C-4), 62.0 (C-11b), 64.2 (OCH₂ and C-7), 105.1 (C-2 and C-11), 110.7 (C-8), 121.8 (C-7a), 124.7 (C-11a), 148.1 and 148.3 (C-9 and C-10).
- 13. For a similar example of homobenzylic coupling, see: A. C. Huitric, B. R. Lowry, A. E. Weber, J. E. Nemorin, and S. Sternhell, <u>J. Org. Chem</u>., 1975, 40, 965.
- 14. a) M. M. A. Hassan and A. F. Casy, <u>Org. Magn. Reson</u>., 1969, 1, 389. b) M. M. A. Hassan and A. F. Casy, <u>Org. Magn. Reson</u>., 1970, 2, 197.
- These values are in accordance with the ¹H nmr data reported for benzo[a]quino-lizidin-2-one 2: a) I. Ninomiya, T. Kiguchi, and Y. Tada, <u>Heterocycles</u>, 1977, 6, 1799. b) I. Ninomiya, Y. Tada, T. Kiguchi, O. Yamamoto, and T. Naito, <u>J. Chem</u>. <u>Soc., Perkin Trans</u> I, 1984, 2035.
- "International Tables for X-Ray Crystallography"; Kynoch Press, Birmingham, England, 1974; vol. III, pp 210-211.
- 17. A. Bax, R. Freeman, and G. A. Morris, <u>J. Magn. Reson</u>., 1981, <u>42</u>, 169.
- 18. A. Bax, R. Freeman, and G. A. Morris, <u>J. Magn. Reson</u>., 1981, <u>43</u>, 333.
- 19. P. Main, S. E. Fiske, S. L. Hull, G. Germain, J. P. Declercq, and M. M. Woolfson, MULTAN. An Automatic System of Computer Programs for Crystal Structure Determination from X-Ray Diffraction Data, University of York, England, and University of Louvain, Belgium, 1984.
- 20. G. M. Sheldrick, SHELX 76: Program for Crystal Structure Determination, University of Cambridge, England, 1976.

Received, 16th February, 1988