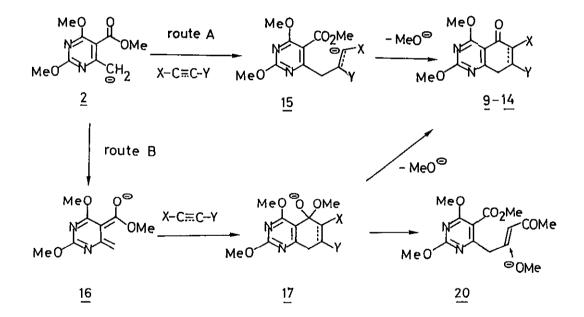

ANIONIC CYCLOADDITION OF METHYL 2,4-DIMETHOXY-6-METHYL-5-PYRIMIDINECARBOXYLATE WITH ACETYLENES AND OLEFINS

Akimori Wada,^{*} Hiromi Yamamoto, and Shōichi Kanatomo School of Pharmacy, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-11, Japan

<u>Abstract</u> — The lithium salt of methyl 2,4-dimethoxy-6-methyl-5-pyrimidinecarboxylate reacts with electron deficient acetylenes and olefins to afford quinazoline derivatives <u>via</u> anionic cycloaddition in considerable yields.

Although the <u>ortho</u>-toluate anion reacts readily with Michael acceptors to afford cycloadducts¹ and has been profitably used for the synthetic approach to certain natural products,^{2,3} there has been no report dealing with analogous reactions of heteroaromatics. We recently found that lithium carbanion (<u>2</u>) derived from methyl 2,4-dimethoxy-6-methyl-5-pyrimidinecarboxylate (<u>1</u>) reacted with C=C and C=C bonds having an electron withdrawing group, where <u>1</u> acted as a 1,4-dipole synton in the cycloaddition reaction. The present paper describes a simple and direct route to quinazoline derivatives with regioselectivity.



The carbanion ($\underline{2}$) was generated by the reaction of methyl 2,4-dimethoxy-6-methyl-5-pyrimidinecarboxylate ($\underline{1}$)⁴ with lithium diisopropylamide (LDA) in ether at -70°C under nitrogen, and reacted with 1.1 equivalent of acetylenes or olefins ($\underline{3}$ - $\underline{8}$) to afford the corresponding cycloadducts ($\underline{9}$ - $\underline{14}$). Cycloaddition occurred regioselectively in such a way that the carbanion ($\underline{2}$) generally reacted at the unsubstituted carbon site of the carbon-carbon multipul

Run	Acetylene or Olefin	Product ^{a)}	Yield ^{b)} (%)	Recover (%)	y ^{b)} M.p. (°C) ^{C)} (Solvent)
1	MeO ₂ C-CEC-CO ₂ N (<u>3</u>)	MeO OH MeO OH MeO N CO ₂ Me	38	60	152-154 (MeOH)
2	нс≘с-со ₂ ме (<u>4</u>)	MeO OH NH CO ₂ Me MeO N (<u>10</u>	24 <u>)</u>)	49	157-159 (MeOH)
3	^H 2 ^{C=CH-CN} (<u>5</u>)	MeO O MeO CN MeO N (11	29_)	48	177-180 (MeOH)
4	H ₂ C=CH-COMe (<u>6</u>)	MeO OH NHH COMe (<u>12</u>	30	20	127-131 (CH ₂ Cl ₂ -pet.ether)
5	^H 2 ^{C=CH-CO} 2 ^{Me} (<u>7</u>)	MeO O CO ₂ Me (<u>13</u>	55)	38	102-104 (CH ₂ Cl ₂ -pet.ether)
6	Me-CH=CH-CO ₂ Me (<u>8</u>)	MeO O N CO ₂ Me MeO Me	47) ^{d)}	32	102-105 (CH ₂ Cl ₂ -pet.ether)
7	MeO-CH=CH-COMe (<u>18</u>)	MeO MeO MeO MeO MeO MeO	25 9)	44	95-96 (MeOH)

- a) All spectroscopic data (nmr, ir, and mass spectra) are in good agreement with the proposed structures.
- b) Isolated yields are based on 1.
- c) The melting points are not corrected.
- d) The stereochemistry could not be confirmed .

bond (Run 2-5).⁵ The structures of the products were characterized by ir, ¹H-nmr and mass spectral data. The yields are listed in the Table. There are two possible routes for the formation of a cycloadduct from the lithium salt (<u>2</u>), the Michael addition of carbanion with acetylene or olefin followed by spontaneous cyclization of intermediate (<u>15</u>) (route A) or [4+2] cycloaddition of the dienol isomer (<u>16</u>) from <u>2</u> to the acetylene or olefin to give <u>17</u> and subsequent elimination of methoxide (route B)⁶ as shown in the Scheme. Although, in the reaction of <u>2</u> with 4-methoxy-3-buten-2-one (<u>18</u>), only a Michael adduct (<u>19</u>) was obtained in 25% yield, it was also understandable that <u>19</u> was produced from the intermediate (<u>20</u>) through route B. As we could not obtaine definite evidence, further investigation is currently in progress.

REFERENCES AND NOTES

- 1. F.M. Hauser and R.P. Rhee, <u>J. Org. Chem.</u>, 1978, 43, 178.
- G.E. Evans, F.J. Leeper, J.A. Murphy, and J. Staunton, <u>J. Chem. Soc. Chem.</u> <u>Commun.</u>, 1979, 205; E.J. Leeper and J. Staunton, <u>ibid.</u>, 1979, 206.

- J.H. Dodd and S.M. Weinreb, <u>Tetrahedron Lett.</u>, 1979, 3593; J.H. Dodd,
 R.S. Garigipati, and S.M. Weinreb, <u>J. Org. Chem.</u>, 1982, 47, 4045.
- 4. This compound was prepared from 5-bromo-2,4-dimethoxy-6-methylpyrimidine by halogen lithium exchange followed by the treatment of carbon dioxide, and esterification with ethereal diazomethane: mp 76-77 °C (pet.ether);
 ν max (CHCl₃) 1725, 1580; δ (CDCl₃) 4.01 (s, 6H, OMeX2), 3.87 (s, 3H, OMe), 2.44 (s, 3H, Me).
- 5. Similar cycloaddition of benzylic carbanion has already been reported, see the following examples. (a) Phthalide: G.A. Kraus and H. Sugimoto, Tetrahedron Lett., 1978, 2263; F.M. Hauser and S. Prasanna, J. Org. Chem., 1979, 44, 2596; idem, ibid., 1982, 47, 383; idem, J. Am. Chem. Soc., 1981, 103, 6378; F.M. Hauser, S. Prasanna, and D.M. Combs, J. Org. Chem., 1983, 48, 1328; N.J.P. Broom and P.G. Sammes, J. Chem. Soc. Chem. Commun., 1978, 162; idem, J. Chem. Soc. Perkin I, 1981, 465; R.A. Russell and R.N. Warrener, J. Chem. Soc., Chem. Commun., 1981, 108. (b) Homophthalate: W. Eisenmuth, H.B. Renfroe, and H. Schmidt, Helv. Chim. Acta, 1965, 48, 375; B.L. Chenard, M.G. Dolson, A.D. Sercel, and S. Swenton, J. Org. Chem., 1984, 49, 318. (c) Homophthalic Anhydride: Y. Tamura, A. Wada, M. Sasho, K. Fukunaga, H. Maeda, and Y. Kita, J. Org. Chem., 1982, 47, 4376; Y. Tamura, M. Sasho, S. Akai, A. Wada, and Y. Kita, Tetrahedron, 1984, 40, 4539; Y. Tamura, M. Sasho, K. Nakajima, T. Tsugoshi, and Y. Kita, <u>J. Org. Chem.</u>, 1984, <u>49</u>, 473; Y. Tamura, M. Sasho, S. Akai, H. Kishimoto, J. Sekihachi, and Y. Kita, Tetrahedron Lett., 1986, 27, 195. 6. Senda et al. proposed the [4+2] cycloaddition mechanism in the reaction of
- 5-carbonyl-substituted 1,3,6-trimethyluracil with electron deficient dienophiles; S. Senda, T. Asao, I. Sugiyama, and K. Hirota, <u>Tetrahedron Lett.</u>, 1980, 531.

Received, 18th February, 1988