SYNTHESIS OF NEW URACILES HAVING <u>N</u>-AMINO- β -, γ -, AND δ -LACTAMS

Tadashi Okawara, Toshifumi Shono, Tetsuo Yamasaki, and Mitsuru Furukawa

Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-hon-machi, Kumamoto 862, Japan

Abstract — The reaction of 1,3-dimethyl-6-methylhydrazinouracil 1 with various haloacyl halides 2 afforded N-haloacylhydrazinouraciles 3, which were converted into the corresponding lactams 4 by treatment with KOH in the presence of BTEAC.

A preceding paper reported the preparation of <u>N</u>-substituted amino- β -, γ -, and δ -lactams,¹ which induced high differentiation of Friend leukemia cell with extremely weak cytotoxicity.² Such a differentiation-inducing activity required the existence of the aromatic ring in the amino moiety and of bromine at the α -position on the lactam ring. In an attempt to obtain compounds with increased inducing differentiation ability, we synthesized new β -, γ -, and δ -lactams bearing uracil moiety, which possesses structural similarity to a

DNA base.

1,3-Dimethyl-6-(1-methylhydrazino)uracil 1,³) readily available from 6-chloro-1,3-dimethyluracil, was allowed to react with various haloacyl halides 2 in sat. aq.NaHCO₃-CH₂Cl₂ to afford <u>N</u>-haloacylhydrazinouraciles 3. Compounds 3 were converted into <u>N-[[N-(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-6-yl)]-</u><u>N</u>-methylamino]- β -, γ -, and δ -lactams 4 in 65-80% yield by stirring with powdered KOH in CH₂Cl₂ in the presence of benzyltriethylammonium chloride (BTEAC). The results are summarized in Tables 1 and 3.

Table 1. <u>N-[[N-(1,3-Dimethyl-2,4-dioxo-1,2,3,4-tetrahydroprimidin-6-yl)]</u>-

$\underline{\mathbf{n}}$ methy runnel p / / / and 6-ractans 4						
	Mp(°C)	Yield(%)	$Ir_{v_{max}}(KBr) cm^{-1}$	M ⁺ (m/z)		
4a	142.5-143.5	74	1780, 1660, 1650	330, 332		
4b	138-139	65	1760, 1650, 1640	266		
4c	170.5-171.5	5	1760, 1650, 1640	238		
4e	191.5-192.5	80	1700, 1655, 1640	330, 332		
4f	177.5-178.5	65	1690, 1650, 1640	252		
4 g	135-136	78	1690, 1670, 1645	265 ^{a)}		

<u>N</u>-methylamino]- β -, γ -, and α -lactams 4

a) M⁺-HBr

In the cases of 2c and 2d, the β -elimination occurred preferentially to afford α , β -unsaturated hydrazide 5 (30-43% yield) and 1,3-dimethylbarbituric acid (6, 10-15%), in addition to the β -lactams 4c and 4d (0-5%). The structures of 4a-d and 5a-b were confirmed by the spectral data. Compound 6 was identified by comparison of the ir spectrum with that of an authentic sample.⁴

Alkaline hydrolysis of 5 was considered to produce 6. Indeed, upon standing for 7 days at room temperature in sat. NaHCO₃-CH₂Cl₂, 5a and b gave 6 and the corresponding <u>N</u>-acylhydrazine. Unfortunately, cyclization of 3h to ε -lactam 4h

failed under various conditions.

The differentiation-inducing activity of these new compounds for Friend leukemia cells is currently being investigated.

EXPERIMENTAL

All the melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. Ir spectra were recorded as KBr pellet on a JASCO IRA-1 grating infrared spectrometer. ¹H-Nmr spectra were determined with a Hitachi R-600 spectrometer using tetramethylsilane as an internal standard. Mass spectra were measured with a JEOL-01 SG mass spectrometer.

 β , γ , and δ -Haloacyl halides (2)

These compounds were prepared from the corresponding carboxylic acids.⁵ General Procedure for N-(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-6-yl)-N-mehtyl-N'- ω -haloacylhydrazine (3)

To a vigorously stirred solution of 1,3-dimethyl-6-methylhydrazinouracil 1 (1.84 g, 10 mmol) in CH_2Cl_2 (30 ml)-sat.aq.NaHCO₃ (15 ml) was gradually added haloacyl halide 2 (10 mmol) under cooling with ice-water. The reaction mixture was stirred for 1 h at room temperature. The CH_2Cl_2 layer was separated, washed with water (15 mlx3), dried over anhydrous MgSO₄, and evaporated to dryness <u>in vacuo</u>. The residue was recrystallized from EtOH. The results are shown in Table 2. Satisfactory elemental analyses were not obtained because these compounds decomposed to 1,3-dimethylbarbituric acid during recrystallization. General Procedure for β -Lactams 4a-d

To a solution of 3a-d (5 mmol) in CH_2Cl_2 (20 ml) was added powdered KOH (0.56 g, 10 mmol) and BTEAC (20 mg), and the mixture was stirred for 3 h at room temperature. The CH_2Cl_2 layer was separated, washed with water (15 mlx3), dried over anhydrous MgSO₄, and evaporated to dryness. The residue was recrystallized from CH_2Cl_2 -n-hexane or EtOH. The results are summarized in Tables 1 and 3.

General Procedure for γ - and δ -Lactam 4e-h

To a vigorously stirred solution of 1 (0.92 g, 5 mmol) in CH_2Cl_2 (30 ml)-5% aq. NaOH (4 ml) was added dropwise **2e-h** (5 mmol) at room temperature. After the addition was over, 5% NaOH (8 ml) and BTEAC (20 mg) were added to the reaction mixture, which was stirred for 3 h at room temperature. The CH_2Cl_2 layer was separated, washed with water (15 mlx3), dried over anhydrous MgSO₄, and evaporated to dryness. The residue was recrystallized from CH_2Cl_2 -n-hexane or EtOH. The results are shown in Tables 1 and 3.

	Mp(°C)	Yield(%)	l _{H-Nmr} (0) (solvent)
3a	166-167	80	(DMSO-d ₆)1.97(3H,s,Me),2.97(3H,s,Me),3.15(3H,s,Me), 3.27(3H,s,Me),4.18(1H,d,C <u>H</u> H,J=10Hz),4.33(1H,d,CH <u>H</u> , J=10Hz),5.37((1H,s,uracil(H-5)),10.55(1H,s,NH)
3ь	125-130	76	unstable
3c [*]	(dec.)	46	(DMSO-d ₆)2.71(2H,t,CH ₂ ,J=6Hz),3.00(3H,s,Me),3.24 (3H,s,Me),3.37(3H,s,Me),3.89(2H,dd,CH ₂ ,J=6Hz),5.31 (1H,s,uracil(H-5)),9.01(1H,s,NH)
3đ	154-156	88	(DMSO-d ₆)2.94(3H,s,Me},3.15(3H,s,Me),3.25(3H,s,Me), 3.99(2H,dd,CH ₂ ,J=7 and 9Hz),4.56(1H,dd,CH,J=7 and 9Hz),5.41(1H,s,uracil(5-H)),9.25(1H,s,NH)
3g	139-140	87	(CDCl ₃)2.16(6H,m,CH x3),3.00(3H,s,Me),3.26(3H,s,Me) 3.39((5H,m,Me and CH ₂),4.32(1H,m,CH),5.36(1H,s, uracl1(5-H)),9.25(1H,s,NH)
3h [*]		88	(CDCl ₃)1.65(8H,m,CH ₂ x4),2.28(2H,t,CH ₂ ,J=6Hz),2.99 (3H,s,Me),3.26(3H,s,Me),3.34(3H,s,Me),3.57(2H,t, (CH ₂ ,J=6Hz),5.26(1H,s,uracil(5-H)),8.59(1H,s,NH)

Table 2. <u>N-(1,3-Dimethyl-2,4-dioxopyrimidine-6-yl)-N-methyl-N</u>'-haloacyl-

hydrazine 3

*This compound decomposed to 6 and \underline{N} -acylhydrazine during recrystallization.

Table 3. N[[N-(1,3-Dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-

6-y1)]-<u>N</u>-methylamino]- β -, γ -, and δ -lactams (4)

	¹ H-Nmr (δ) (solvent)		Analysis(%) Calcd.(Found)		
			H	N	
4a	(DMSO-d ₆)1.94(3H,s,Me),3.04(3H,s,Me), 3.34(3H,s,Me), 3.43(3H,s,Me),3.71(1H,s,CHH),3.73(1H,s,CHH),5.42 (1H,s,uracil(H-5))	39.90 (39.71)	4.57 (4.46)	16.92 (16.44)	
4Ь	(DMSO-d ₆)1.33(6H,s,Mex2),3.00(3H,s,Me),3.19(2H,s, CH ₂),3.34(3H,s,Me),3.41(3H,s,Me),5.39(1H,s, uraci1(H-5))	54.12 (54.09)	6.81 (6.81)	21.04 (20.99)	
4c	(DMSO-d ₆)2.85(2H,t,CH ₂ ,J=6Hz),3.02(3H,s,Me),3.34 (3H,s,Me),3.40(5H,m,Me and CH ₂),5.41(1H,s, uracil(5-H))	50.41 (50.34)	5.92 (5.74)	23.52 (23.59)	
4e	(CDCl ₃)2.52(2H,m,CH ₂),2.98(3H,s,Me),3.33(8H,s,Mex2 and CH ₂)4.37(1H,dd,CH,J=3 and 6Hz),5.45(1H,s, uracil(5-H))	39.90 (40.01)	4.57 (4.44)	16.67 (16.67)	
4f	(CDCl ₃)2.31(4H,m,CH x2),2.97(3H,s,Me),3.25-3.52(8H, m,Mex2 and CH ₂),5.39(1H,s,uracil(5-H))	52.37 (52.46)	6.39 (6.19)	22.21 (22.18)	
4g*	(CDC1 ₃)2.32(4H,m,CH ₂ x2),2.99(3H,s,Me),3.34(8H,m, Mex2, and CH ₂),4.63(1H,s,CH),5.37(1H,s,uraci1(5-H))	42.46 (42.81)	5.48 (5.34)	15.24 (15.20)	

*contained 0.5 EtOH

N-(1,3-Dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-6-yl)-N-methyl-N'acrylolyhydrazine derivatives (5a,b)
5a:mp 125-126°C. ¹H-Nmr (CDCl₃) & 3.08 (3H,s,Me), 3.30 (3H,s,Me), 3.39 (3H,s,Me),
5.32 (1H,s,uracil(5-H)), 5.90 (1H,m,CH), 6.35 (2H,m,CH₂), 9.02 (1H,br,NH).
Ir v^{KBr}_{max}cm⁻¹: 3316 (NH), 1680, 1647 (C=0).
5b:mp 153-154°C. ¹H-Nmr (CDCl₃) & 3.09 (3H,s,Me), 3.30 (3H,s,Me), 3.38 (3H,s,Me),
5.39 (1H,s,uracil(5-H)), 6.22 (1H,d,HHC=,J=4.9Hz), 7.11 (1H,d,HHC=,J=4.0Hz),
8.94 (1H,br,NH). Irv^{KBr}_{max}cm⁻¹: 3212 (NH), 1688, 1647 (C=0).

REPERENCES

- 1. T. Okawara, R. Kato, and M. Furukawa, Chem. Pharm. Bull., 1984, 32, 2426.
- H. Morioka, M. Takezawa, H. Shibai, T. Okawara, and M. Furukawa, <u>Agri. Biol</u>. <u>Chem.</u>, 1986, 50, 1757.
- 3. H. Biltz and H. Wittek, Chem. Ber., 1921, 54, 1035.
- 4. T. Okawara, T. Matsuda, and M. Furukawa, Chem. Pharm. Bull., 1982, 30, 1225.

Received, 7th March, 1988