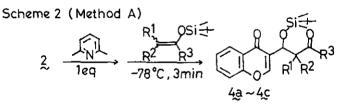

FACILE ROUTE TO 2,3-DISUBSTITUTED CHROMANONES VIA CHROMONE-3-CARBOXALDEHYDE ACTIVATED BY SILVLATION


Hideharu Iwasaki, Takashi Kume, Yohsuke Yamamoto, and Kin-ya Akiba Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda-machi, Naka-ku, Hiroshima 730, JAPAN

<u>Abstract</u>- Aldol type condensation of chromone-3-carboxaldehyde (<u>1</u>) with active methylenes in the presence of t-butyldimethylsilyl triflate afforded silylated aldol adducts (<u>4</u>), which were further converted to 2,3-disubstituted chromanones by reaction with enol silyl ethers via the corresponding 4-siloxypyrylium salts.

Functionalized chromones have attracted continuous interest due to their pharmaceutical activity.¹ Nohara et al. reported the antianaphylactic activity for the E- β -(4-oxo-1-benzo-pyran-3-y1)acrylic acid ($5f:R^1=R^2=H$),² which was prepared from chromone-3-carboxaldehyde (<u>1</u>) and malonic acid. Aldol condensation of <u>1</u> has been used for limited substrates such as aryl methyl ketones⁴ and other highly acidic active methylenes.^{1,2,3,5,6} Furthermore these methods did not give aldol type adducts (<u>4</u>) but only the dehydrated α,β -unsaturated carbonyl compounds (<u>5</u>). We now report the aldol type condensation of <u>1</u> to afford <u>4</u> via 4-t-butyldimethylsiloxy-3-formyl-1-benzopyrylium triflate (<u>2</u>) and the conversion of <u>4</u> to 2,3-disubstituted chromanones (6), which could not be prepared from 5.

According to the method reported recently by us,⁷ chromone-3-carboxaldehyde (<u>1</u>) and 1 eq of t-butyldimethylsilyl triflate were mixed without solvent and heated to 160 °C for 30 min under nitrogen and the mixture was dissolved in CDCl₃ or CD₃CN. In the ¹H nmx, a ring proton at C-2 and a formyl proton of <u>1</u> (δ 8.6 and 10.4) shifted to much lower field (δ 9.6 and 15.0) and the chemical shifts changed neither by dilution with the solvent nor by addition of excess silylating reagent, which indicates that the covalent bonding was formed to afford a cation <u>2</u> or <u>3</u> (here we prefer <u>2</u>) (Scheme 1). A reaction of <u>2</u> with enol silyl ethers took place very quickly, the reaction completed in a few minutes even at -78 °C. But the yield of the adduct (<u>4</u>) was unsatisfactory as shown in Table 1 (Scheme 2: Method A).⁸ Therefore, we investigated other conditions for the aldol type condensation and found that the following two methods could be used instead of Method A: First, <u>Method B</u> (reaction of <u>1</u> with excess of an <u>ester</u> in the presence of 2 eq of triflate and 1.3-2.2 eq of 2,6-lutidine in dichloromethane under reflux) was useful for the preparation of <u>4d</u> and <u>4e</u> with ethyl acetate and ethyl propionate. This method afforded no adducts with methyl isobutyrate, and gave <u>4d</u> and <u>4e</u> in high yields (Table 2). In addition either <u>4</u> or <u>5</u> could be prepared selectively by the choice of the amount of 2,6lutidine. Under acidic (with 1.0-1.3 eq of lutidine) or basic (with 3.0 eq of lutidine) conditions, desilanol of <u>4</u> took place to give <u>5</u> as major product. On the other hand, the adduct (<u>4</u>) was obtained under neutral conditions (with 2.0-2.2 eq of lutidine) (Table 2). Compound <u>5d</u> was hydrolyzed to give <u>5f</u> ($R^1=R^2=H$ in scheme 3)² in 98 % yield with 1.6 M H₂SO₄ under reflux for 1.5 h. As with aliphatic ketones the system gave a complex mixture, and <u>Method C</u> (premixing of a <u>ketone</u> with 1 eq of silyl triflate and 1 eq of 2,6-lutidine at room temperature and the mixture was added to the pyrylium salt in the presence of 1.2 eq of 2,6-lutidine) was developed for aliphatic ketones. For example, <u>4a</u> was obtained in 84 % yield by Method C. For alkyl aryl ketones Methods B and C gave only the corresponding desiloxylated compound (<u>5</u>) in 89-94 % yield.

R1 \mathbf{r}^2 R^3 Product Yield (%) Entry 4 1 H 4a Н i-Pr 36 2 4b Мe Me Me 40 3 Me OMe 4cMe 50

Table	1	Yield	of	4a-4c	by	Method	A	a)
				A- A7				

a) see text

Scheme 3 (Method B) si∓ R¹CH₂CO₂R² :0₂R² CO₂R² CH₂Cl₂ Xeq (2eq) וק reflux th 4g : R¹=H , R²= Et 4g : R¹=Me, R²= Et 5d:R¹=H, R²=Et 5e: R¹=Me, R²=Et

Table 2	The Effect of	f the Amoun	t of 2,6-Lutidine	on the Pr	oduct (Met	hod B)
Entry	R ¹	R ²	2,6-lutidine X(eq)	Yie 4 ~	1d (%) 5	
1	Н	Et	0.5	0	Ó	
2			1	0	50	
2			1.3	0	80-92	
3			1.7	40	50	
4 E			2.0	89	8	
6			2.2	96	0	
0			3.0	0	90	
6	Ме	Et	1.5	4	82	
8 9	ме	104	2.0	92	6	

Scheme 4 (Method C) $\begin{cases} MeCOi-Pr \\ \neq SiOTf(1eq) & O O^{Si \neq O} \end{cases}$
$\frac{2}{1.2eq} \xrightarrow{I_{N}} (1eq) \xrightarrow{0^{\circ}C^{\sim}rt, 3h} \qquad \qquad$
4a 84%
Scheme 5
$4d \xrightarrow{\pm SiOTf}_{(4g)} \xrightarrow{R^{0}C}_{10min} \xrightarrow{OSi \pm OEt}_{OTf} \xrightarrow{OSi \pm OSi \pm OSi \pm CO_{2}Et}_{OTf} \xrightarrow{R^{2}}_{1h} \xrightarrow{R^{2}}_{1h} \xrightarrow{R^{2}}_{1h} \xrightarrow{R^{2}}_{f} \xrightarrow{R^{2}}_{h} \xrightarrow{R^{2}}_{$

Table 3	Synthesis	of	2,3-Disubstituted	Chromanones	(6)
			,	•	· = /

Entry	\mathbf{R}^{1}	R^2	temp	Product	Yi	eld (%)
				6	6	5
1	Н	i-Pr	rt	<u>6</u> a	72	23
2			0°C	~	63	37
3	н	OMe	rt	<u>6</u> b	74	18
4	Me	i-Pr	rt	6č	62	29

In order to introduce a second group into the ring, the adducts $\underline{4}$ and $\underline{5}$ were silvlated again to form the corresponding pyrylium salts, which were subjected to react with enol silvl ethers or active methylene compounds. Although $\underline{5}$ gave a complex mixture, $\underline{4}$ afforded the expected 2,3-disubstituted chromanones ($\underline{6}$) with concomittant formation of $\underline{5}$. The yields of $\underline{6}$ and $\underline{5}$ varied by the reaction conditions and are summarized in Table 3. In summary the aldol type adduct ($\underline{4}$) thus obtained could be used as precursor for the preparation of 2,3-disubstituted chromanones ($\underline{6}$), hence we presented a unique and facile method for functionalization of chromones.

REFERENCES AND NOTES

1. C. K. Ghosh, J. Heterocyclic Chem., 1983, 20, 1437.

- A. Nohara, H. Kuriki, T. Saijo, K. Ukawa, T. Murata, M. Kanno, and Y. Sanno, J. Med. Chem., 1975, <u>18</u>, 34.
- 3. A. Nohara, T. Ishiguro, and Y. Sanno, Tetrahedron Lett., 1974, 1183.
- 4. U. K. Polyakov, V. M. Voronkin, and S. V. Tsukerman, <u>Ukr. Khim. Zh.</u>, 1976, <u>42</u>, 388; <u>Chem. Abstr.</u>, 1978, <u>85</u>, 21028k.
- 5. W. D. Jones and W. L. Albrecht, J. Org. Chem., 1976, 41, 706.
- 6. G. Haas, J. L. Stanton, and A. Von Sprecher, J. Heterocycl. Chem., 1981, 18, 607.
- 7. H. Iwasaki, T. Kume, Y. Yamamoto, and K-y. Akiba, <u>Tetrahedron Lett.</u>, 1987, <u>28</u>, 6355.
 T. Kume, H. Iwasaki, Y. Yamamoto, and K-y. Akiba, <u>Tetrahedron Lett.</u>, 1987, <u>28</u>, 6305.
- 8. Compound <u>4d</u>; ¹H nmr (CDCl₃) δ 0.03 (6H, s), 0.94 (9H, s), 1.26 (3H, t, J=7 Hz), 2.61 (1H, dd, J=14.5, 7.0 Hz), 2.91 (1H, dd, J=14.5, 4.0 Hz), 4.20 (2H, q, J=7 Hz), 5.40 (1H, ddd, J=1.1, 4.0, 7.0 Hz), 7.18-7.67 (3H, m), 7.90 (1H, d, J=1.1 Hz), 8.14 (1H, dd, J=0.9, 7.4 Hz); Mass: 376 (M⁺).
- 9. Compound <u>5d</u>; ¹H nmr (CDCl₃) § 1.33 (3H, t, J=7.0 Hz), 4.26 (2H, q, J=7 Hz), 7.21 (1H, d, J=13.2 Hz), 7.21-7.80 (3H, m), 7.57 (1H, d, J=13.2 Hz), 8.11 (1H, s), 8.25 (1H, dd, J=0.9, 6.6 Hz); Mass: 244 (M⁺).
- 10. Compound <u>6a</u>; ¹H nmr (CDCl₃) δ 0.00 (6H, s), 0.86 (9H, s), 1.09 (6H, d, J=6.8 Hz), 1.32 (3H, t, J=6.2 Hz), 2.27 (1H, dd, J=16.4, 2.2 Hz), 2.52 (1H, sep, J=6.8 Hz), 3.12 (1H, dd, J=16.4, 10.1 Hz), 4.21 (1H, q, J=6.2 Hz), 5.71 (1H, d, J=16.3 Hz), 5.76 (1H, dd, J=10.1, 2.2 Hz), 6.74-7.45 (4H, m), 7.79 (1H, d, J=16.3 Hz); Mass: 432 (M⁺).
- 11. Other products described in the text gave satisfactory nmr and ms data, and <u>4d</u>, <u>5d</u>, and <u>6a</u> gave correct elemental analyses.
- 12. A Grant-in-Aid for Special Project Research (No. 61111004 and 62101004) is acknowledged for the partial support of this research.