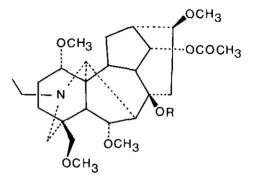

STUDIES ON THE CONSTITUENTS OF ACONITUM SPECIES. VII.

Hideo Bando, Koji Wada, and Takashi Amiya Hokkaido Institute of Pharmaceutical Sciences, 7-1, Katsuraoka-cho, Otaru, 047-02, Japan


Yasuo Fujimoto and Kimiko Kobayashi The Institute of Physical and Chemical Research, Wako, Saitama 351-01, Japan

<u>Abstract</u> — Two new diterpenoid alkaloids, subcumine (1) and subcusine (2), were isolated from the roots of <u>Aconitum japonicum</u> Thunb. The structures of these alkaloids were determined on the basis of spectral data, chemical evidence, and X-ray analysis. We also have isolated two known alkaloids, ezochasmaconitine (3) and anisoezochasmaconitine (4).

Recently, we reported an isolation of eighteen alkaloids^{2,3} from <u>Aconitum</u> <u>japonicum</u> Thunb. In this paper we report isolation and structure determination of two new C_{19} -diterpenoid alkaloids, named subcumine (1) and subcusine (2) together with known alkaloids, ezochasmaconitine (3)⁴ and anisoezochasmaconitine (4)⁴. We also report the revised assignments of ¹³C-chemical shifts of C(9), C(10), and C(13) in the related C_{19} -diterpenoid alkaloids. Subcumine (1), mp 200-202°C, $C_{26}H_{41}NO_7$, was deduced a C_{19} -diterpenoid alkaloid from the molecular formula and the ¹H-nmr spectrum which showed five methyl groups assignable to an N-CH₂CH₃, an acetyl, and three methoxyls, and two oxygenated methines at δ 4.02 (d, J= 7.9 Hz) and 4.76 (t, J= 4.6 Hz, $C_{14}\beta$ -H) (See Experimental). This spectrum was similar to that of 14-acetylneoline⁴ (7, bullatine C⁵, delstaphisagnine⁶) with the exception of the signal at δ 4.02 ppm. The coupling constant of the signal was similar to the value of $C_6\alpha$ -H in the nmr spectra of bicoloridine⁷(5, alkaloid A⁸) and bicolorine 6-<u>0</u>-acetate⁹ (6) and the structure was assigned to 1. ¹³C-Nmr and ir spectra of 1 also supported the structure. Finally, the structure of 1 was determined by X-ray crystal analysis. Perspective view of 1 was illustrated in Fig.1.

1; $R_1 = \beta - OCH_3$, $R_2 = COCH_3$ 2; $R_1 = \beta - OCH_3$, $R_2 = H$ 7; $R_1 = \alpha - OCH_3$, $R_2 = COCH_3$ 8; $R_1 = \alpha - OCH_3$, $R_2 = H$

 $\stackrel{3}{\sim}$; R= CO-C₆H₅ 4; R= CO-C₆H₄-OCH₃(p)

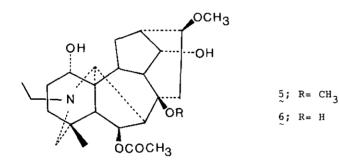


Chart 1

¹H-Nmr spectrum of subcusine (2), mp 194-196°C, $C_{24}H_{39}NO_6$, showed four methyl groups assignable to an N-CH₂<u>CH₃</u>, three methoxyls, and two oxygenated methines at δ 4.00 (d, J= 7.8 Hz, $C_6\alpha$ -H) and 4.06 (t, J= 4.5 Hz, $C_{14}\beta$ -H). The nmr spectrum of 2 suggested that the acetyl group was free from the structure of 1. Hydrolysis of 1 gave the compound 2, and the structure of subcusine (2) was determined to be deacetylsubcumine.

Table I showed ¹³C-chemical shifts of 1, 2, 7, and neoline (8). The assignments for C(10) and C(13) were suggested to be revised in most of the C_{19} -diterpenoid alkaloids by Pelletier, et al.¹⁰ We agree to their proposal and wish to propose the further revised assignments for C(9) and C(10) of 14-acetylneoline (7) in view of following consideration; in comparison with spectra of 1, 2, 7, and 8, introduction of the acyl group at C(14) shifts the C(9) and C(13) resonances upfield as the result of β effect and shifts C(10) resonance downfield (1.3 ppm) as the result of γ effect in compound 7 and 8. Since C₆- β oriented methoxyl group is sterically close to C(9) and C(10), the resonances of C(9) and C(10) in compound 1 and 2 are likely affected by sterical effect in addition to the acylation effect.

Table I. ¹³C-chemical shifts and assignments for subcumine (1), subcusine (2), 14-acetylneoline (delstaphisagnine) (7)⁶, and neoline (8)¹¹

carbon	1	2	7	8	carbon	1	2~	7	8 ~
1	72.5	72.4	72.0	72.1	14	76.6	76.0	77.1	75.9
2	27.2	27.3	29.5	29.5 ^a	15	40.3	40.6	42.6	42.7
3	30.0 ^a	30.0 ^a	30.0	29.9 ^a	16	81.5	81.5	81.9	82.3
4	36.9	37.0	38.0	38.2	17	65.0	65.2	63.3	63.3
5	44.0	44.2	44.5	44.3 ^b	18	77.7	77.7	80.1	80.3
6	82.9	82.4	83.3	83.3	19	57.9	57.6	57,9	57.2
7	51.1	50.8	52.6	52.3	6'	57.2	57.1	57,9	57.8
8	75,1	75.1	74.6	73.4	16'	56.2	56.3	56.1	56.3
9	43.5	46.1	43.3 ^C	48.3	18'	59.1	59.1	59.1	59.1
10	45.1	45.4	46,2 ^C	44.9 ^{b,c}	N-CH2	48.5	48.5	48.2	48.2
11	48.7	48.3	49.7	49.6	CH	12.9	12.9	13.0	13.0
12	29.2 ^a	29.3 ^a	29.3	29.8 ^a	0=C	171.5		170.4	
13	37.9	39.8	36.6c	40.7 [°]	СНЗ	21.6		21.3	

a and b: The assignments may be interchanged in any vertical column.

c: The assignments were revised according to the previous data on C_{19} -diterpenoid alkaloids¹⁰ and the reason described in the text.

X-ray crystal structure determination of 1

Single crystals were obtained by recrystallization from acetone-hexane. A colorless crystal, 0.20 x 0.19 x 0.65 mm, was used for the X-ray study. The crystal belongs to an orthorhombic system, space group $P2_12_12_1$, with a unit cell dimensions a= 15.639(3), b= 17.825(3), c= 8.895(3)Å, U= 2480(1)Å³, Z= 4, Dx= 1.285 Mg·m⁻³, T= 293 K, μ =0.086 mm⁻¹, F(000)= 1040, Mr= 479.60. X-ray diffraction data were collected on a Rigaku automated four-circle diffractometer with graphitemonochromatized MoKa(λ =0.71073) radiation. Within the range of 28≦55 , 2185 reflections with $F_0>3\sigma(F_0)$ were obtained. Unique reflections (2077) were used for the structure determination and refinement. The intensities were corrected for Lorenz-polarization effects and for deterioration, but no absorption correction was applied. The structure was solved by the direct phasing method using MULTAN 78¹² and was refined by the block-diagonal least-squares method. Unit weight was given to all reflections, and anisotropic temperature factors were used for all non-hydrogen atoms. The final R and Rw values were 5.31 and 5.03%, respectively. The final difference Fourier map showed no peak higher than 0.45 eA^{-3} . Atomic scattering factors and anomalous scattering corrections were taken from International Tables for X-ray Crystallography¹³. Crystallographic calculations performed on a FACOM N-780 computer of the Institute UNICS-III program system¹⁴. The drawing of the molecule is shown in Fig. I with $C_{6}^{-\alpha H}$ in it. The list of the bond lengths and angles is normal and given in Table III and IV. Tortion angles within the five, six, and seven-membered rings are given in Table V.

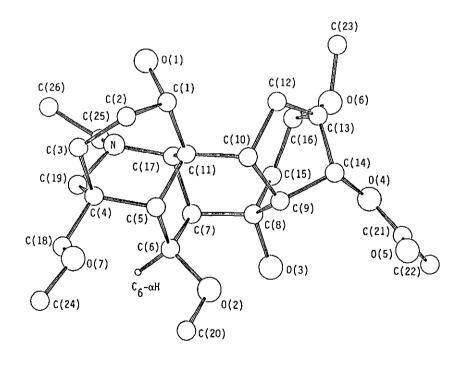


Fig. I. Perspective View of 1

Table II. Atomic parameters.

Positional parameters are multiplied by 10⁴ with estimated standard deviations in parentheses. The numbering scheme of atoms is shown in Fig. 1. The equivalent isotropic temperature factor is defined by $B_{eq} = 4/3 \cdot \Sigma_i \Sigma_j \beta_{ij} (\alpha_i \cdot \alpha_j)$.

isotropic cempera	acure raccor	is defined by	eq = 4/3'lilj ^B i	j ^{(a} i ^{-a} j ⁾
	x	У	Z	$B_{eq}(\hat{A}^2)$
O(1) O(2) O(3) O(4) O(5) O(6) O(7) N C(1) C(2) C(3) C(4) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14)	2236(2) 3956(2) 5483(2) 5786(2) 5635(3) 5926(2) 1349(3) 2094(3) 2094(3) 1363(3) 1316(3) 2129(3) 2748(3) 3602(3) 4221(3) 4868(3) 4403(3) 3510(3) 2996(3) 3729(3)	1194(1369(1256(-285(-983(390(2042(2343(855(1034(1850(2120(1458(1779(1773(1124(373(327(1059(-69(-156($\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C(14) C(15) C(16) C(17) C(18) C(20) C(21) C(22) C(22) C(23) C(24) C(25) C(26) Table III. Bond	4872(3) 5405(3) 5147(3) 3602(3) 1842(3) 2623(3) 3513(4) 6080(4) 7016(4) 5765(4) 964(5) 3623(4) 3100(4)	-287(1110(555(2696(2523(2696(1511(-634(-495(120(2410(2410(2905(3427((Å) with e.s.d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6) 3.0 6) 3.1 5) 2.4 6) 3.4 6) 3.3 6) 5.8 8) 5.2 8) 5.6 7) 5.6 9) 6.4 6) 3.8 8) 5.6
$\begin{array}{c} O(1) & -C(1) \\ O(3) & -C(8) \\ O(5) & -C(21) \\ O(7) & -C(18) \\ N & -C(19) \\ C(1) & -C(11) \\ C(4) & -C(5) \\ C(5) & -C(6) \\ C(7) & -C(8) \\ C(8) & -C(15) \\ C(10) -C(11) \\ C(12) -C(13) \\ C(15) -C(16) \end{array}$	1.441(6) 1.440(6) 1.224(9) 1.405(7) 1.482(7) 1.565(6) 1.561(7) 1.547(7) 1.547(7) 1.547(6) 1.541(7) 1.545(6) 1.527(7) 1.533(7)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.451(6) 1.440(6) 1.410(9) 1.480(7) 1.515(8) 1.535(7) 1.563(6) 1.548(6) 1.548(6) 1.576(7) 1.532(8) 1.502(8)	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Table IV. Bond C(6) -O(2) C(16) -O(6) C(17) -N C(19) -N O(1) -C(1) C(1) -C(2) C(3) -C(4) C(5) -C(4)	-C(20) 11 -C(23) 11 -C(19) 11 -C(25) 11 -C(25) 11 -C(11) 11 -C(3) 11 -C(5) 11 -C(19) 11	<pre>th e.s.d.'s in 2.4(4) 2.0(4) 3.8(4) 0.6(4) 2.8(4) 1.8(4) 1.8(4) 0.2(4) 0.2(4) 08.1(4)</pre>	<pre>c(14)-O(4) -C(21 C(18)-C(7) -C(24 C(17)-N -C(25 O(1) -C(1) -C(2) C(2) -C(1) -C(11 C(2) -C(3) -C(4) C(3) -C(4) -C(18 C(5) -C(4) -C(19</pre>) 113.2(5)) 112.1(4) 111.0(4)) 112.1(4) 113.2(4)) 108.5(4)) 110.9(4)

Table IV continued.

.

$\begin{array}{cccc} C(4) & -C(5) & -C(6) \\ C(6) & -C(5) & -C(11) \\ O(2) & -C(6) & -C(7) \\ C(6) & -C(7) & -C(8) \\ C(8) & -C(7) & -C(17) \\ O(3) & -C(8) & -C(9) \\ C(7) & -C(8) & -C(9) \\ C(7) & -C(8) & -C(9) \\ C(9) & -C(8) & -C(11) \\ C(9) & -C(10) & -C(14) \\ C(9) & -C(10) & -C(14) \\ C(9) & -C(10) & -C(12) \\ C(11) & -C(11) & -C(12) \\ C(11) & -C(11) & -C(10) \\ C(11) & -C(11) & -C(10) \\ C(10) & -C(11) & -C(10) \\ C(10) & -C(11) & -C(12) \\ C(11) & -C(11) & -C(12) \\ C(12) & -C(13) & -C(14) \\ C(14) & -C(13) & -C(14) \\ C(14) & -C(13) & -C(16) \\ O(6) & -C(16) & -C(15) \\ N & & -C(17) & -C(17) \\ C(7) & -C(17) & -C(11) \\ N & & -C(19) & -C(4) \\ O(4) & -C(21) & -C(22) \\ N & & -C(25) & -C(26) \\ \end{array}$	109.2(4) 104.3(4) 111.4(4) 113.9(4) 109.2(4) 109.6(4) 110.1(4) 112.4(4) 111.9(4) 112.2(4) 106.8(4) 113.7(4) 108.8(3) 99.0(4) 111.9(4) 110.2(4) 116.3(4) 105.3(4) 105.3(4) 105.3(4) 112.3(4) 112.7(5)	$\begin{array}{ccccc} C(4) & -C(5) & -C(11) \\ O(2) & -C(6) & -C(5) \\ C(5) & -C(6) & -C(7) \\ C(6) & -C(7) & -C(17) \\ O(3) & -C(8) & -C(7) \\ O(3) & -C(8) & -C(15) \\ C(7) & -C(8) & -C(15) \\ C(7) & -C(9) & -C(10) \\ C(10) & -C(9) & -C(14) \\ C(9) & -C(10) & -C(12) \\ C(1) & -C(11) & -C(12) \\ C(1) & -C(11) & -C(17) \\ C(5) & -C(11) & -C(17) \\ C(5) & -C(11) & -C(17) \\ C(10) & -C(12) & -C(13) \\ C(12) & -C(14) & -C(13) \\ C(9) & -C(14) & -C(13) \\ C(9) & -C(14) & -C(13) \\ C(13) & -C(16) & -C(13) \\ C(13) & -C(16) & -C(15) \\ N & -C(17) & -C(11) \\ O(7) & -C(18) & -C(4) \\ O(4) & -C(21) & -O(5) \\ O(5) & -C(21) & -C(22) \end{array}$	108.4(4) 114.1(4) 105.3(4) 102.7(4) 108.9(4) 104.4(3) 111.3(4) 113.0(4) 101.6(4) 102.8(3) 113.1(4) 116.4(4) 98.0(3) 107.0(4) 112.3(4) 112.3(4) 113.4(4) 101.8(4) 112.5(4) 114.1(4) 109.6(4) 123.8(6) 122.6(6)
---	---	---	---

Table V. Torsion angles(°) with e.s.d.'s in parentheses.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.1(6) 8.1(6) -57.1(5) 50.1(5) 4.8(5) -56.0(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	102.2(4) -49.7(5) -37.5(5) 30.7(5) 61.9(5) -71.6(4) -17.2(4)
	5.0(5) -34.0(5) 51.3(4) -49.0(4) 26.4(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5.0(5) 84.3(5) -91.0(5) 28.4(6) -24.6(6) 87.2(5) -93.6(4)
C(15)-C(8) -C(9) -C(14) C(8) -C(9) -C(14)-C(13) C(16)-C(13)-C(14)-C(9) C(14)-C(13)-C(16)-C(15) C(8) -C(15)-C(16)-C(13) C(9) -C(8) -C(15)-C(16)	-26.6(5) 71.7(5) -67.3(5) 19.3(6) 28.4(6) -24.6(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-73.1(4) 70.3(4) -61.4(5) 47.7(5)

Table V continued.

C(5) -C(4) -C(19)-N	-48.7(5)
C(19)-C(4) -C(5) -C(11)	64.6(5)
$\begin{array}{ccccc} C(7) & -C(8) & -C(9) & -C(10) \\ C(8) & -C(9) & -C(10) - C(11) \\ C(9) & -C(10) - C(11) - C(17) \\ C(10) - C(11) - C(17) - C(7) \\ C(8) & -C(7) & -C(17) - C(11) \\ C(17) - C(7) & -C(8) & -C(9) \end{array}$	-37.5(5) 30.7(5) -46.2(5) 65.5(4) -78.1(4) 64.4(5)
C(5) -C(6) -C(7) -C(17)	-15.7(4)
C(6) -C(7) -C(17)-C(11)	43.2(4)
C(5) -C(11)-C(17)-C(7)	-53.0(4)
C(6) -C(5) -C(11)-C(17)	43.1(4)
C(11)-C(5) -C(6) -C(7)	-17.2(4)

EXPERIMENTAL

All melting points are uncorrected. Ir spectra in CHCl₃ solution were taken with a JASCO IRA-2 spectrometer. Nmr spectra were measured in CDCl₃ solution with a JOEL FX-100 and GX-270 spectrometers using TMS as an internal standard. Ms were measured with a Shimazu LKB-9000B spectrometer, and HR-ms were measured with JMS-D300 mass spectrometer. Optical rotations were measured with Jasco DIP-4 digital polarimeter.

<u>Isolation procedure</u>---We have already reported the isolation and extraction procedure from the roots of the title plant to obtain the crude fraction. Isolation of ten alkaloids isolated from the Fr-A were reported previously.² The remaining crude bases in the Fr-A were combined and chromatographed on silica gel with a mixture of hexane and ether saturated with 28% aqueous NH_3 ; the content of hexane was decreased gradually. Purification by repeated column chromatography gave subcumine (1, 22.4 mg), subcusine (2, 11.0 mg), 3 (9.0 mg, mp 163-164°C), and 4 (4.7 mg, mp 141-143°C).

<u>Subcumine (1)</u> ---mp 200-202°C(from acetone-hexane), $[\alpha]_{D}$ +18.3°(c= 0.48, CHCl₃). HR-ms: Calcd for C₂₆H₄₁NO₇ 479.2883, Found 479.2884. Ms (m/z): 479 (M⁺), 464 (base peak), 462, 446. Ir v(max, cm⁻¹): 3450, 1720, 1250. ¹H-Nmr (δ , 270 MHz): 1.11 (3H, t, J= 7.3 Hz), 2.06 (3H, s), 3.32 (6H, s), 3.34 (3H, s), 4.02 (1H, d, J= 7.9 Hz), 4.76 (1H, t, J= 4.6 Hz).

<u>Subcusine (2)</u> --- mp 194-196°C(from acetone-hexane), $[\alpha]_D$ +33.3°(c= 0.3, CHCl₃). HR-ms: Calcd for C₂₄H₃₉NO₆ 437.2777, Found 437.2751. Ms (m/z): 437 (M⁺), 422 (base peak), 420, 404. Ir v(max, cm⁻¹): 3450. ¹H-Nmr (δ): 1.07 (3H, t, J= 7.0 Hz), 3.30 (3H, s), 3.33 (6H, s), 4.00 (1H, d, J= 7.8 Hz), 4.06 (1H, t, J= 4.5 Hz). Hydrolysis of 1---Subcumine (2 mg) was dissolved in 1 ml of 5% methanolic KOH solution and allowed to stand at room temperature for 4 h. Removal of solvent under reduced pressure gave a residue, which was mixed with a small amount of H_2^0 and extracted with CHCl₃ (10 ml x 3). The extract was evaporated to yellowish residue which showed a single spot on tlc. The product was identical with subcusine (2) by comparison of ¹H-nmr spectrum and the tlc behavior.

REFERENCES

- 1. Part VI: K. Wada, H. Bando, and T. Amiya, <u>Heterocycles</u>, 27, 1249 (1988).
- K. Wada, H. Bando, T. Mori, R. Wada, Y. Kanaiwa, and T. Amiya, <u>Chem. Pharm</u>. <u>Bull</u>., 33, 3658 (1985).
- H. Bando, K. Wada, M. Watanabe, T. Mori, and T. Amiya, <u>Chem. Pharm. Bull.</u>, <u>33</u>, 4717 (1985).
- H. Takayama, A. Tokita, M. Ito, S. Sakaı, F. Kurosakı, and T. Okamoto, <u>Yakugaku</u> <u>Zasshi</u>, 102, 245 (1982).
- 5. Z. Yuanlong and Z. Renhong, <u>Heterocycles</u>, <u>17</u>, 607 (1982). The structure of bullatine C is identical to 14-acetylneoline.
- 6. S. W. Pelletier and M. M. Badawı, <u>Heterocycles</u>, 23, 2873 (1985). The structure of delstaphisagnine is identical to 14-acetylneoline.
- 7. G. de la Fuente, J. A. Gavin, R. D. Acosta, and J. A. Morales, <u>Heterocycles</u>, 27, 1 (1988).
- P. W. Codding, K. A. Kerr, M. M. Benn, A. T. Jones, S. W. Pelletier, N. V. Mody, <u>Tetrahedron Lett</u>, 127 (1980).
- 9. P. Kulanthaivel, M. Benn, and W. Majak, Phytochemistry, 25, 1511 (1986).
- S. W. Pelletier, S. K. Srivastava, B. S. Joshi, and J. D. Olsen, <u>Heterocycles</u>, 23, 331 (1985).
- 11. S. W. Pelletier and Z. Djarmatı, J. Am. Chem. Soc., 98, 2626 (1976).
- 12. P. Main, S. E. Hull, L. Lessinger, G. Germain, J. -P. Declercq, and M. M. Woolfson, <u>MULTAN. A Program for the Automatic Solution of Crystal Structures</u> <u>from X-ray Diffraction Data</u>. Univ. of York, England, and Louvain, Belgium, 1978.
- International Tables for X-ray Crystallography, Vol. IV, Birmingham: Kynoch Press, 1974.
- 14. T. Sakurai and K. Kobayashi, <u>Rikagaku Kenkyusho Hokoku</u>, 55, 69 (1979).

Received, 30th March, 1988