A CONVENIENT SYNTHESIS OF ETHYL-&-DIOXOHYDROPYRIDINYL, ETHYL-&-DIHYDRODIOXOPYRIDO[3,2-c]PYRIDAZINYL AND ETHYL-&-OXOPYRANYLACRYLATE DERIVATIVES

Fathy M. Abdel Galil^{*}, Obeys K. Hashim^a, and Sohair S. Saleh^b Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt ^aCollege of Education, University of Salahudin, Arbil, Iraq ^bCollege of Girls, Ain-Shams University, Cairo, Egypt

<u>Abstract</u>- A variety of pyridine, pyrido[3,2-c]pyridazine and pyran derivatives was synthesized from the enamino-nitrile derivative diethyl 3-amino-2-cyano-2-pentenedioate (<u>1</u>) as a starting material.

Polyfunctional nitriles are highly reactive reagents that have been extensively used in heterocyclic synthesis¹⁻³. In the course of our investigations on the reactions of activated nitriles⁴⁻⁷ for developing simple, new and efficient procedures for the synthesis of heterocycles, we report here a new synthesis of polyfunctional pyridine, pyrido[3,2-c]pyridazine and pyran derivatives starting with diethyl 3-amino-2-cyano-2-pentenedioate (1)⁸. Thus boiling of 1 (0.01 mole) in pyridine (50 ml) for 4 h (TLC monitoring) yielded a mixture of products which is separated by column chromatography on silica gel using ethyl acetate / methanol (19/1) as an eluent to give a major colourless product (56% yield) of molecular formula $C_{16}H_{16}N_4O_6$ (M⁴-360) together with three other fractions. The structure of the major product could be formulated as <u>2</u> based on elemental analysis and spectral data. Structure <u>2</u> is corresponding to condensation of two molecules of <u>1</u> with elimination of two molecules of ethanol. Trials to identify the three other fractions were unsuccessful. Coupling of <u>2</u> (0.01 mole) with arene diazonium chlorides afforded <u>3</u>a-c which were readily

cyclised on refluxing (2 h) in acetic acid (30 ml) - hydrochloric acid (2 ml) mixture via ethanol elimination to the pyrido[3,2-c]pyridazine derivatives 4a-c.

Condensation of the hydrazide 5 (0.01 mole) which is readily obtained⁹ from <u>2</u> with an equimolar amount of acetylacetone in refluxing ethanol (30 ml) for 3 h in the presence of a catalytic amount of 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) (1 ml) afforded the oxopyran derivative <u>6</u> ($M^+=262$). The structure of <u>6</u> was based on elemental analysis and spectral data (cf. Tables 1 and 2). The formation of <u>6</u> is assumed to proceed via the sequence demonstrated in Chart 1.

Chart 1

On the other hand, condensation of 5 (0.01 mole) with ethyl acetoacetate (0.01 mole) under similar conditions gave the pyridone derivative $\frac{7}{2}$ (M⁺=278) (cf. Chart 1). The structures of the newly synthesized derivatives were established on the basis of analytical and spectroscopic data (Tables 1 and 2) and a variety of new heterocycles becomes now available. The biological activity of the products is now undertaken.

Compound*	Мр. (°С)	Yield (%)	Mol. Formula	C % Calculated (Found)	H Z Calculated (Found)	N % Calculated (Found)
2	179	56	^C 16 ^H 16 ^N 4 ⁰ 6	53.33 (53.20)	4.44 (4.20)	15.55 (15.70)
<u>3</u> a	241	75	^c ₂₂ ^H ₂₀ ^N 6 ⁰ 6	56,89 (57.10)	4.31 (4.30)	18.10 (18.20)
<u>3</u> b	202	80	^c 23 ^H 22 ^N 6 ⁰ 6	57.75 (57.80)	4.60 (4.50)	17.57 (17.30)
<u>3</u> c	189	72	^C 22 ^H 19 ^N 6 ^O 6 ^{Br}	48.62 (48.80)	3.50 (3.40)	15.46 (15.50)
<u>4</u> a	196	85	^c ₂₀ ^H ₁₄ ^N ₆ ⁰ ₅	57.41 (57.30)	3.35 (3.40)	20.09 (20.10)
<u>4</u> b	300	79	^c 21 ^H 16 ^N 6 ⁰ 5	58.33 (58.40)	3.70 (3.60)	19.44 (19.60)
<u>4</u> c	207	81	^C 20 ^H 13 ^N 6 ^O 5 ^{Br}	48.28 (48.30)	2.61 (2.70)	16.90 (16.80)
<u>6</u>	210	85	^c 13 ^H 14 ^N 2 ⁰ 4	59,54 (59,60)	5.34 (5.20)	10.68 (10.80)
<u>7</u>	257	68	$c_{12}^{H_{14}N_4O_4}$	51.79 (51.90)	5.03 (5.10)	20.14 (20.30)

Table 1. List of the newly synthesized compounds.

*All compounds are crystallized from ethanol except <u>3</u>b, <u>6</u> and <u>7</u> which were crystallized from dioxan.

Compound	Ir [cm ⁻¹] Selected bands	¹ Н Nmr (б ррт) [DMSO-d ₆]
2	3395, 3380, 3320 (NH ₂ and NH); 2225 2210 (two CN); 1760, 1750 (two ester CO); 1690, 1680 (ring CO); 1620 (C=N); 1600 (C=C).	1.3 (t, J=7 Hz, 6H, two ester CH ₃); 1.5 (s, 3H, piperidone protons); 4.1 (q, J=7 Hz, 4H, two ester CH ₂); 6.7 (s, 2H, NH ₂); 8.5 (s, 1H, NH).
<u>3</u> a	3380 - 3250 (NH ₂ and NH); 2220, 2200 two CN); 1765, 1750 (two ester CO); 1680, 1665 (ring CO); 1620 (C=N); 1600 (C=C).	l.3 (t, J=7 Hz, 6H, two ester CH ₃); l.4 (s, lH, piperidone-H); 4.2 (q, J=7 Hz, 4H, two ester CH ₂); 6.5 (s, 2H, NH ₂); 7.3 - 8.1 (m, 7H, C ₆ H ₅ and two NH).
<u>4</u> a	3450 - 3250 (NH ₂ and NH); 2225 (CN); 1760 (ester CO); 1690, 1680, 1660 (ring CO); 1625 (C=N); 1610 (C=C).	1.1 (t, J=7 Hz, 3H, ester CH ₃); 1.4 (s, 1H, piperidone-H); 4.1 (q, J=7 Hz, 2H, ester CH ₂); 5.2 (s, 2H, NH ₂); 7.2 - 7.8 (m, 6H, C ₆ H ₅ and NH).
<u>6</u>	3400, 3300 (NH ₂); 2210 (CN); 1770 (ester CO); 1695 (ring CO); 1620 (C=N); 1600 (C=C).	1.2 (t, J=7 Hz, 3H, ester CH_3); 2.4 (s, 3H, CH_3); 2.8 (s, 3H, CH_3); 4.2 (q, J=7 Hz, 2H, ester CH_2); 6.9 (s, 1H, pyran-H); 7.6 (s, 2H, NH ₂).
7	3390 - 3300 (NH ₂); 2210 (CN); 1770 (ester CO); 1680, 1670 (ring CO); 1625 (C=N); 1600 (C=C).	<pre>1.1 (t, J=7 Hz, 3H, ester CH₃); 1.4 (s, 2H, pyridone-H3); 2.7 (s, 3H, CH₃); 4.1 (q, J=7 Hz, 2H, ester CH₂); 5.4 (s, br, 4H, two NH₂).</pre>

Table 2. Ir and ¹H nmr data of compounds 2, 3a, 4a, 6, and 7

ACKNOWLEDGEMENT F. M. Abdel Galil is deeply indebted to DAAD, Bonn/F.R.G. for granting a fellowship during summer 1987 and to Prof. Dr. W. Steglich, Institute of Organic Chemistry and Biochemistry, University of Bonn/F.R.G. for facilities that enabled spectral measurements.

REFERENCES

- 1. H. Junek, Monatsh. Chem., 1963, 94, 192.
- M. H. Elnagdi, M. R. H. Elmoghayar, D. H. Fleita, E. M. Hafez, and S. M. Fahmy, J. Org. Chem., 1967, 41, 3781.
- 3. K. Gewald and U. Hain, Synthesis, 1984, 62.
- 4. F. M. Abdel Galil, B. Y. Riad, S. M. Sherif, and M. H. Elnagdi, Chem. Lett., 1982, 1123.
- F. M. Abdel Galil, S. M. Sherif, M. M. Sallam, and M. H. Elnagdi, <u>Liebigs Ann. Chem.</u>, 1986, 1639.
- 6. F. M. Abdel Galil and M. H. Elnagdi, Liebigs Ann. Chem., 1987, 477.
- 7. F. M. Abdel Galil and A. O. Abdelhamid, Sulfur Lett., 1987, 6, 155.
- Prepared after the procedure described by H. Junek and F. Frosch, <u>Z. Naturforsch.</u>, 1971, <u>26b</u>, 1124.
- 9. S. M. Fahmy, N. Abed, and R. M. Mohareb, Synthesis, 1982, 490.

Received, 19th May, 1988