
ASYMMETRIC INDUCTION BY CHIRAL HETEROCYCLIC COMPOUNDS: REACTION OF CHIRAL N-METHYL-4-PHENYL-1,3-OXAZOLIDINES WITH ORGANOMETALLIC REAGENTS

Hiroshi Takahashi,<sup>\*</sup> Hiroyuki Niwa, and Kimio Higashiyama Institute of Medicinal Chemistry, Hoshi University, 2-4-41, Ebara, Shinagawa, Tokyo 142, Japan

<u>Abstract</u> — The reaction of  $(2\underline{S}, 4\underline{R}) - 2 - alkyl - N - methyl - 4 - phenyl - 1, 3 - oxazolidines (<u>la-c</u>) with Grignard reagent gave (l\underline{R}, l'\underline{R}) - form compounds (<u>2a-c</u>) as the major product. On the contrary, the reaction of <u>la-c</u> with organotitanium reagent gave (l\underline{S}, l'\underline{R}) - form compounds (<u>3a-c</u>) as the major product. This stereoselectivity is a remarkable characteristic of the reaction of 1,3-oxazolidines with organometallic reagents.$ 

The preparation of chiral N-methyl-1,3-oxazolidines is easily achieved by the condensation of chiral N-methylethanolamines with various aldehydes, and the reaction of these compounds with Grignard reagents gave chiral amines having a newly created chiral center by cleavage of the 1,3-oxazolidine ring.<sup>1,2)</sup> We wish to describe herein a stereoselective reaction of the chiral N-methyl-4-phenyl-1,3-oxazolidines with Grignard and organotitanium reagents. The reaction of the  $(2\underline{S}, 4\underline{R})$ -2-alkyl-N-methyl-4-phenyl-1,3-oxazolidines  $(\underline{1a}-\underline{e})$  with benzylmagnesium chloride in ether at room temperature afforded diastereomeric mixtures of  $(1\underline{R}, 1'\underline{R})$ - and  $(1\underline{S}, 1'\underline{R})$ -1-alkyl-N-2'-hydroxy-1'-phenylethyl-N-methyl-2-phenylethylamines (2a-e and 3a-e).<sup>2</sup>

On the other hand, the reaction of  $(2\underline{S}, 4\underline{R}) - \underline{1a} - \underline{c}$  with benzyltitanium triisopropoxide in ether or tetrahydrofuran (THF) afforded the diastereomeric mixtures of  $(1\underline{R}, 1'\underline{R})$ and  $(1\underline{S}, 1'\underline{R})$ -products  $(\underline{2a} - \underline{c} \text{ and } \underline{3a} - \underline{c})$ . A typical experimental procedure was as follows: Benzylmagnesium chloride (8 mM in 8 ml of THF) was slowly added dropwise to a stirred solution of chlorotitanium triisopropoxide (8 mM) in THF (10 ml) at 0°C under a nitrogen atmosphere and the stirring was continued for 1-2 h. The resulting mixture was added dropwise to a stirred solution of <u>la-c</u> (2 mM) in THF (5 ml), and the stirring was continued at 30-40°C under a nitrogen atmosphere for 15-20 h. After treatment with a small amount of water, the resulting white precipitate was filtered off, and the organic layer was dried over anhydrous  $Na_2SO_4$  and concentrated under reduced pressure. The residue was chromatographed on silica gel with  $CH_2Cl_2$ : MeOH (97:3) to give a diastereomeric mixture (2a-c and <u>3a-c</u>) as a colorless oil.



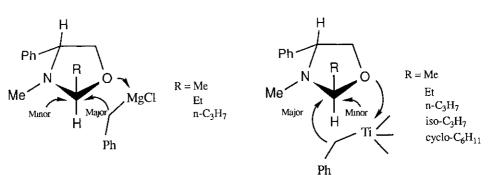
Further, the reaction of <u>la</u>, <u>ld</u>, and <u>le</u> with dibenzyltitanium diisopropoxide gave also the diastereomeric mixtures of  $(1\underline{S}, 1'\underline{R})$  - and  $(1\underline{R}, 1'\underline{R})$ -compounds (<u>2a</u>, <u>2d</u>, <u>2e</u>; and <u>3a</u>, <u>3d</u>, <u>3e</u>). On the other hand, the reaction of <u>la</u> with organotitanium ate-complex, <u>i.e</u>., chloromagnesium tetrakis(isopropanolato)benzyltitanate, gave the diastereomeric mixture of <u>2a</u> and <u>3a</u>.

The structures and the absolute configurations of these compounds were confirmed by comparing the proton nuclear magnetic resonance  $({}^{1}H-nmr)$  spectra of 2a, 2b, 2d, 2e, 3a, 3b, 3d and 3e with related compounds described in a previous paper.<sup>2</sup>) The structures of new compounds (1c, 2c, and 3c) were confirmed by  ${}^{1}H-nmr$  and mass spectral analyses.<sup>3</sup>) The ratio of two diastereomeric mixtures in each case was estimated by the comparison of the peak height of the  ${}^{1}H-nmr$  spectra. These experimental results are summarized in Table 1.

|                                      |                                                                                                                      |           | Products |        |                     |                        |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------|----------|--------|---------------------|------------------------|
| Substrates                           | Reagents                                                                                                             |           | Cond     | itions | Yield <sup>a)</sup> | Ratio of               |
| R                                    | (eq.                                                                                                                 | uivalents | )°C      | h      | (%)                 | <u>2 : 3</u>           |
| сн <sub>3</sub>                      | С <sub>6</sub> <sup>Н</sup> 5 <sup>СН</sup> 2 <sup>М</sup> gCl                                                       | (3)       | 20       | 3      | 86                  | 80 : 20 <sup>b</sup> ) |
| с <sub>2</sub> н <sub>5</sub>        | N                                                                                                                    | (3)       | 20       | 3      | 87                  | 75 : 25 <sup>b)</sup>  |
| n−C <sub>3</sub> H <sub>7</sub>      | 11                                                                                                                   | (2)       | 10       | 4      | 82                  | 68:32                  |
| iso-C <sub>3</sub> H <sub>7</sub>    | IT                                                                                                                   | (3)       | 20       | 4      | 85                  | 39 : 61 <sup>b)</sup>  |
| cyclo-C <sub>6</sub> H <sub>11</sub> | 11                                                                                                                   | (3)       | 20       | 4      | 88                  | 25 : 75 <sup>b}</sup>  |
| CH3                                  | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> Ti(O-i-C <sub>3</sub> H <sub>7</sub> ) <sub>3</sub>                    | (3)       | 40       | 15     | 83                  | 8:92                   |
| с <sub>2</sub> н <sub>5</sub>        | п                                                                                                                    | (3)       | 40       | 15     | 71                  | 26 : 74                |
| n-C3H7                               | 11                                                                                                                   | (3)       | 30       | 20     | 63                  | 37:63                  |
| снз                                  | $(C_6^{H_5}CH_2)_2^{Ti}(0-i-C_3^{H_7})_2$                                                                            | (2)       | 20       | 12     | 60                  | 35 : 65                |
| iso-C <sub>3</sub> H <sub>7</sub>    | 11                                                                                                                   | (3)       | 20       | 12     | 60                  | 30 : 70                |
| cyclo-C6 <sup>H</sup> 11             | 11                                                                                                                   | (3)       | 20       | 12     | 60                  | 32:68                  |
| сн <sub>3</sub> с <sub>6</sub>       | H <sub>5</sub> CH <sub>2</sub> Ti <sup>-</sup> (O-i-C <sub>3</sub> H <sub>7</sub> ) <sub>4</sub> .Mg <sup>+</sup> Cl | (3)       | 40       | 15     | 80                  | 15 : 85                |
| сн <sub>3</sub>                      | TiCl <sub>4</sub> + C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> MgCl                                               | (4)       | 20       | 5      | 55                  | 60:40                  |

Table I Reaction of (2<u>5</u>,4<u>R</u>)-2-Alkyl-N-methyl-4-phenyl-1,3-oxazolidines (<u>1a-e</u>) with Organometallic Reagents

a) The yields are for isolated products.


b) Cited from our previous paper (Ref. 2).

The major products  $(\underline{2a}-\underline{c})$  for the reaction of  $(\underline{2S}, 4\underline{R})-\underline{1a}-\underline{c}$  with Grignard reagent were identified with the minor products obtained from the reaction of  $(\underline{2S}, 4\underline{R})-\underline{1a}-\underline{c}$  with organotitanium reagent, whereas the minor products  $(\underline{3a}-\underline{c})$  obtained from the reaction with Grignard reagent were identified with the major products of the reaction with organotitanium reagent. On the other hand, the major products ( $\underline{3d}$  and  $\underline{3e}$ ) for the reaction of ( $\underline{2S}, 4\underline{R}$ )- $\underline{1d}$  and  $\underline{1e}$  with Grignard reagent were identified with the major products obtained from the reaction of organotitanium reagents as shown in Scheme 1.

Previously, we had reported that the reaction of <u>1d</u> and <u>1e</u> with Grignard reagent results in cleavage of the 1,3-oxazolidine ring by attack of the organometallic species.<sup>2)</sup> Then, the reaction of <u>1a</u> with Grignard reagent in the presence of titanium tetrachloride was attempted since it was considered that the titanium

reagent as a Lewis acid would cleave the 1,3-oxazolidine ring, followed by attack of the Grignard reagent to form the intermediate immonium salt. However, it affored <u>2a</u> as the major product contrary to expectations. Yamamoto et al.<sup>4</sup>) reported that the attack of organotitanium reagent occurs from behind the cleaved carbon-oxygen bond of 1,3-dioxanes. Then, it was also considered in the case of 1,3-oxazolidines that the organotitanium reagent attacks the carbon atom at the 2-position of the ring from the backside of the carbon-oxygen bond, while the Grignard reagent attacks from the cleaved side of the carbon-oxygen bond as shown Scheme 2.

Scheme 2



REFERENCES AND NOTES

- 1) H.Takahashi, Y.Suzuki, and T.Kametanı, <u>Heterocycles</u>, 1983, <u>20</u>, 607.
- H.Takahashi, Y.Chida, K.Higashiyama, and H.Onishi, <u>Chem. Pharm. Bull.</u>, 1985, 33, 4662.
- 3) The <sup>1</sup>H-nmr spectra were obtained with a JEOL JNM-FX100 and/or JNM-GX400 spectrometers. The mass spectra were recorded with a JEOL JMS-D300 spectrometer.
- J.Fujita, K.Morooka, and H.Yamamoto, J. Organometallic Chem., 1985, 285, 83;
  A.Mori, K.Ishihara, I.Arai, and H.Yamamoto, <u>Tetrahedron</u>, 1987, 43, 755.

Received, 30th May, 1988