
REACTION OF 6-GLYCOSYLAMINOPYRIMIDIN-4-ONES WITH DIETHYL ETHOXYMETHYLENE-MALONATE IN ACIDIC MEDIUM.

José A. García, Adolfo Sánchez, and Manuel Nogueras Dept. Química Orgánica, Colegio Universitario de Jaén, Universidad de Granada, 23071 Jaén, Spain

<u>Abstract</u> - Starting from the already known 6-glycopyranosylaminopyrimidin-4-ones, some novel (E)-5-(2-carbethoxyvinyl) derivatives have been synthesized by the reaction with diethyl ethoxymethylenemalonate (EMME) in acetic acid.

The reaction of 4-aminopyrimidines with diethyl ethoxymethylenemalonate (EMME) is one of the procedures employed in the synthesis of pyrido[2,3-d] pyrimidines<sup>1-2</sup>. Certain compounds containing this ring systems have shown antibacterial<sup>3</sup> and anticonvulsive<sup>4</sup> activities.

In the reaction of the 6-glycosylaminopyrimidines  $\underline{1} - \underline{4}$  with EMME in glacial acetic acid we have not found 8-glycosylpyrido[2,3-d]pyrimidines and instead isolated the corresponding (E)-5-(2-carbethoxyvinyl) derivatives, homologues of the (E)-5-vinyl uracils so interesting in the treatment of viral infections<sup>5</sup>.



The treatment of  $\underline{1} - \underline{4}^6$  with an excess of EMME (1:5) in refluxing acetic acid, only yielded the following identifiable products: (E)-5-(2-carbethoxyvinyl)-2-methoxy-3-methyl-6- $\beta$ -D-(2,3,4-tri-0-acetyl)xylopyranosylaminopyrimidin-4(3H)-one 5; (E)-5-(2-carbethoxyvinyl)-2-methoxy-3-methyl-6- $\beta$ -

|          |          |       | Table 1.          |                                                                  |  |
|----------|----------|-------|-------------------|------------------------------------------------------------------|--|
| Comp.    | Reaction | Yield | Mp (°C)           | Molecular Formula                                                |  |
|          | time (h) | %     | (solvent)         |                                                                  |  |
| 5        | 24       | 18    | 228-230           | C22 <sup>H</sup> 29 <sup>N</sup> 3 <sup>O</sup> 11               |  |
|          |          |       | Et <sub>2</sub> 0 |                                                                  |  |
| <u>6</u> | 10       | 12    | 180-182           | C25 <sup>H</sup> 33 <sup>N</sup> 3 <sup>O</sup> 13               |  |
|          |          |       | Et <sub>2</sub> 0 |                                                                  |  |
| <u>7</u> | 24 25    |       | 240               | C <sub>22</sub> H <sub>29</sub> N <sub>3</sub> O <sub>10</sub> S |  |
|          |          |       | EtOH              |                                                                  |  |
| <u>8</u> | 24 2     |       | 169-170           | C25H33N3O12S                                                     |  |
|          |          |       | EtOH              |                                                                  |  |

\* Satisfactory elemental analyses (C, H, N) and ms data were obtained for all the newly synthesized compounds.

| Comp. | N(3)Me | X-Me  | -NH- <sup>a</sup> | C(1')-H | -C <u>H</u> =CH- | CH=CH- |
|-------|--------|-------|-------------------|---------|------------------|--------|
| <br>5 | 3.3 s  | 3.9 s | 6.4 d             | 5.4 m   | 7.3 d            | 6.8 d  |
|       |        |       | J <b>±8.8</b> Hz  |         | J=15.4           | Hz     |
| 6     | 3.3 в  | 4.0 в | 6.2 d             | 5.5 m   | 7.4 d            | 6.9 đ  |
|       |        |       | J≃8.8 Hz          |         | J=16.4           | Hz     |
| 7     | 3.4 в  | 2.5 s | 6.6 đ             | 5.5 m   | 7.4 d            | 6.9 d  |
| -     |        |       | J=8.5 Hz          |         | J=15.0           | Hz     |
| 8     | 3.4 s  | 2.6 s | 6.3 d             | 5.5 m   | 7.5 d            | 6.9 d  |
| _     |        |       | J=8.5 Hz          |         | J=16.0           | Hz     |

| Table | 2. | <sup>1</sup> H-Nmr | data | of | compounds | 5 | <br>8 |  |
|-------|----|--------------------|------|----|-----------|---|-------|--|
|       |    |                    |      |    |           |   |       |  |

 $\texttt{CDCl}_3,\ \delta$  (ppm) a) exchangeable

.

## Table 3. Ir and uv data of the compounds 5 - 8

| Comp.    |                 | IR (KB   | <u>r, cm</u>     | 1 <u>)</u> |                      | UV                                 |
|----------|-----------------|----------|------------------|------------|----------------------|------------------------------------|
|          | ∨<br><b>№</b> н | v<br>C=0 | <sup>∨</sup> C=0 | vc=c       | c M (MeOH)           | $\lambda$ (nm) (c) max             |
| 5        | 3430            | 1705     | 1740             | 1610       | 5x10 <sup>-5</sup>   | 229 (13700) 275 (5300) 329 (10400) |
| <u>6</u> | 3440            | 1700     | 1750             | 1610       | 6x10 <sup>-5</sup>   | 220 (16300) 270 (8240) 324 (7600)  |
| <u>7</u> | 3420            | 1720     | 1740             | 1600       | 5.8x10 <sup>-5</sup> | 238 (22200) 344 (7600)             |
| <u>8</u> | 3400            | 1705     | 1750             | 1640       | 5x10 <sup>-5</sup>   | 234 (16600) 337 (7900)             |

 $D-(2,3,4,6-tetra-0-acety1)glucopyranosylaminopyrimidin-4(3H)-one \underline{6}; (E)-5-(2-carbethoxyviny1)-3-methyl-2-methylthio-6-\beta-D-(2,3,4-tri-0-acety1)xylopyranosylaminopyrimidin-4(3H)-one \underline{7} and (E)-5-(2-carbethoxyviny1)-3-methyl-2-methylthio-6- \beta-D-(2,3,4,6-tetra-0-acety1)glucopyranosylaminopyrimidin-4(3H)-one \underline{8}.$ 

The configuration of the 5-carbethoxyvinyl groups has been established by the chemical displacement of the vinylic protons as well as the values of their coupling constants.

The formation of the compounds  $\underline{5} - \underline{8}$  is due to an vinylation at C-5 atom of the pyrimidine ring, favoured by the reaction conditions and the higher nucleophilic character of this position in contrast to the other nucleophilic centre of the molecule, C(6)-NH-Gly. The reason for this would be the glycosidic rest takes electronic charge because of its -I effect. The low nucleophilic character of the amino group in C(6) would be the cause by which the cyclization to pyrido [2,3-d] pyrimidine did not occur.

## EXPERIMENTAL

Melting points were determined in a Melting Point Apparatus Gallemkamp and are uncorrected. <sup>1</sup>H-nmr and <sup>13</sup>C-nmr spectra have been made in the following spectrometers: Hitachi-Perkin-Elmer R-600 and Bruker AM 300. TMS was used as internal standard. Infrared spectra were recorded with a spectrophotometer ir-Beckman 4250. Ultraviolet (uv) spectra were taken on a Perkin-Elmer lambda 5. Column chromatography was done on Kieselgel 60 silica gel (70-230 mesh) using the solvent systems indicated in each case.

## General method of the synthesis of (E) - 5 - (2 - carbethoxyvinyl) derivatives 5 - 8

To a solution of 1 g of 6-glycosylaminopyrimidine  $\underline{1} - \underline{4}$  in 1.5 ml of acetic acid excess EMME (1:5 moles) was added. The mixture was refluxed and stirred for an appropriate time (Table 1). After cooling, the reaction mixture was diluted with 20 ml of CHCl<sub>3</sub> and washed with a saturated aqueous NaCO<sub>3</sub>H solution, then with H<sub>2</sub>O and finally the organic solution was dried with Na<sub>2</sub>SO<sub>4</sub>. The solution was concentrated to 1 ml and was applied on a chromatography column using as solvent hexane-ethyl ether (0-40%) mixtures for <u>5</u> and <u>6</u> and dichloromethane-ethyl ether (0-40%) mixtures for <u>7</u> and <u>8</u>. Yields and physical data are given in the Tables.

## REFERENCES

- A. D. Broom, J. L. Shim, and G. L. Anderson, <u>J. Org. Chem.</u>, <u>41</u>, 1095 (1976); G. L. Anderson, <u>J. Heterocyclic Chem.</u>, <u>22</u>, 1469 (1985); G. L. Anderson and S. G. Richardson, <u>J. Heterocyclic Chem.</u>, <u>22</u>, 735 (1985).
- 2. S. Nishigaki, K. Ogiwara, K. Senga, S. Fukazawa, K. Aida, Y. Machida, and F. Yoneda, <u>Chem.</u> <u>Pharm. Bull.</u>, 18, 1385 (1970).
- 3. N. Suzuki, <u>Chem. Pharm. Bull.</u>, <u>28</u>, 761 (1980).
- 4. E. Kretzchmar, Pharmazie, 35, 253 (1980).
- 5. E. De Clerq and R. T. Walker, Pharmac. Ther., 24, 1 (1984).
- 6. R. Asenjo, M. Melgarejo, C. Rodriguez, M. Nogueras, and A. Sánchez, <u>An. Quím.</u>, **79C**, 417 (1983).
- 7.  ${}^{13}$ C-Nmr data of <u>5</u> (CDCl<sub>3</sub>),  $\delta$ (ppm): 170.58, 170.24, 169.64, 168.59 (CH<sub>3</sub>-C=0, COOEt); 161.16, 158.13, 156.18, 92.36 (C=6, C=2, C=4, C=5); 134.15, 115.99 (-CH=CH=); 81.11, 72.49, 70.45, 69.17, 64.48 (C=1', C=2', C=3', C=4', C=5'); 59.83 (-CH<sub>2</sub>-); 55.55 (CH<sub>3</sub>-O); 27.54 (CH<sub>3</sub>-N); 20.73, 20.68 (CH<sub>3</sub>CO); 14.44 (CH<sub>3</sub>-CH<sub>2</sub>-).

<sup>13</sup>C-Nmr data of <u>6</u> (CDCl<sub>3</sub>)  $\delta$  (ppm): 170.79, 170.62, 170.16, 169.44, 168.57 (CH<sub>3</sub>CO, COOEt); 161.29, 157.76, 156.23, 92.50 (<u>C</u>-6, <u>C</u>-2, <u>C</u>-4, <u>C</u>-5); 133.70, 117.02 (-<u>CH=CH</u>-); 80.63, 73.58, 72.85, 70.77, 68.53, 62.00 (<u>C</u>-1', <u>C</u>-2', <u>C</u>-3', <u>C</u>-4', <u>C</u>-5', <u>C</u>-6'); 60.04 (-<u>CH<sub>2</sub></u>-); 56.61 (<u>CH<sub>3</sub>-0</u>); 27.58 (<u>CH<sub>3</sub>-N</u>); 20.76, 20.64 (<u>CH<sub>3</sub>CO</u>); 14.24 (<u>CH<sub>3</sub>-C<sub>2</sub>-).</u>

Received, 9th June, 1988