NITROOLEFINS. I. A NEW AND CONVENIENT ACCESS TO INDOLIZINES AND PYRAZOLO[1,5-a]PYRIDINES USING 1-NITRO-2-(PHENYLTHIO)ETHYLENE

Yoshinori Tominaga,^{*} Yuichi Ichihara, and Akira Hosomi^{*} Faculty of Pharmaceutical Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852, Japan

<u>Abstract</u> 1-Nitro-2-(phenylthio)ethylene (1) reacts with a variety of N-ylides and N-imines (pyridinium, isoquinolinium, quinolinium, phthalazinium N-ylides and N-imines) in the presence of triethylamine to give the corresponding fused pyrrole and pyrazole derivatives (indolizines, pyrrolo[2,1-a]isoquinoline, pyrrolo[2,1-a]phthalazine, pyrazolo[1,5-a]-pyridine, pyrazolo[5,1-a]quinoline, and pyrazolo[5,1-a]isoquinoline) along with the corresponding 1-nitropyrrolopyridines and 1-nitropyrazolopyridines, respectively, in moderate yields.

Nitroolefins are useful reagents not only for the synthesis of heterocycles but also for various synthetic transformations.¹⁻⁴ The presence of electron-donating groups on the vicinal olefinic carbon atom has made this nitroolefin moiety especially reactive and attractive for the synthesis of a wide variety of nitrogen- and sulfur-containing heterocyclic compounds. Among these polarized nitroolefins, ketene dithioacetals,⁵ ethoxymethylene compounds,^{6,7} and aminomethylene compounds^{8,9} are widely used. Recently, 1-nitro-2-(phenylthic)ethylene $(1)^3$ was prepared conveniently by the reaction of acetoxynitroethane with thiophenol followed by treatment with sulfuryl chloride and triethylamine. To our knowledge, 1, known as a precursor to sulfinyl or sulfonynitroethylenes, has been allowed to react only with pyrrole to give 1-nitro-2-pyrrolylethylene,³ although the electrophilic reagent 1 may be a potential building block for the synthesis of heterocyclic compounds. Indeed we report herein that 1 is an efficient and unprecedented reagent for the synthesis of indolizine and pyrazolopyridine derivatives.

The reaction of 1-ethoxycarbonylmethylpyridinium bromide (2a) with 1 in the presence of triethylamine in ethanol gave the desired ethyl indolizine-3-carboxylate (3a) in 56.5% yield, along with ethyl 1-nitroindolizine-3-carboxylate (4a) in 38.8% yield. Similarly 1-ethoxycarbonylmethyl-3,5-dimethylpyridinium bromide (2b) reacted with 1 to give ethyl 6,8-dimethylindolizine-3-carboxylate (3b) in 55.8% yield. 3-Cyanoindolizine derivatives (3c, d)¹⁰ were also obtained from the corresponding 1-cyanomethylpyridinium bromides (2c, d). 1-Nitro-6,8dimethylindolizines (4b, d) could not be almost detected in the reaction mixture in the cases of 2b and 2d, although similar results were found in the reaction of 3,5-dimethylpyridinium N-ylides with nitroketene dithioacetal.¹¹ Furthermore reactions of 1 with 2e and 2f under the similar conditions of the synthesis of indolizines gave the corresponding cyclized products, ethyl pyrrolo[2,1-<u>a</u>]isoquinoline-3-carboxylate (5a), ethyl pyrrolo[2,1-<u>a</u>]phthalazine-3-carboxylate (5b), together with ethyl 1-nitro-substituted derivatives, 6a and 6b, respectively, in yields as indicated in Scheme 1.

2a-d				1	3a-d		4a-d	
entry	2:	R ¹	R ²	R ³	3		4	
					mp(°C)	Yield(%)	mp(°C)	Yield(%)
1	a:	COOEt	H	Н	oil	56.5	139	38.8
2	b:	COOEt	Me	Me	48	55.8		trace
3	c:	CN	н	н	48	73.3	231	17.6
4	d:	CN	Me	Me	108	54.7		

2e,f

		5		6	
entry	2: X	(°C)	Yield(%)	mp(°C)	Yield(%)
1	е: СН	94	51.0	167	34.9
2	f: N	115	35.0	212	7.0

This method using 1 can be readily applied to the synthesis of pyrazolo[5,1a]pyridines. Thus we attempted to synthesize pyrazolopyridine derivatives which were known as very important and interesting intermediates for the synthesis of pharmacologically active compounds and dyes.¹² The reaction of 1-aminopyridinium mesitylenesulfonates (9a, b) with 1 in the presence of triethylamine gave the desired pyrazolo[5,1-a]pyridines (10a,¹³ b¹⁴) and 1-nitropyrazolo[5,1-a]pyridine derivatives (11a,¹⁴ b) in yields as shown in Scheme 2. Pyrazolo[5,1a]quinolines (12,¹⁵ 13) and pyrazolo[5,1-a]isoquinolines (14, 15) were also prepared from 9c and 9d in a manner similar to that described for the synthesis of pyrazolo[5,1-a]pyridines (10, 11).

Scheme 2

In conclusion, it has been proved that 2-nitro-1-(phenylthio)ethylene (1) is a very useful electrophilic reagent for the synthesis of indolizine and pyrazolo-pyridine derivatives. Related works are now under active progress.

ACKNOWLEDGMENTS The work is partially supported by the Ministry of Education, Science, and Culture.

REFERENCES AND NOTES

- 1. S. Rajappa and M. D. Nair, Adv. Heterocyclic Chem., 1979, 25, 113.
- a) Miyashita, T. Yanami, and A. Yoshikoshi, <u>J. Am. Chem. Soc</u>., 1976, 98, 4879; b) M. Ochiai, M. Arimoto, and E. Fujita, <u>Tetrahedron Lett</u>., 1981, 22, 1165.
- N. Ono, A. Kamimura, and A. Kaji, <u>J. Org. Chem</u>., 1986, 51, 2139 and references therein.
- 4. M. Node, Yakugaku Zasshi, 1986, 106, 1.
- 5. Y. Tominaga and Y. Matsuda, J. Heterocyclic Chem., 1985, 22, 937.
- 6. O. S. Wolbeis, Synthesis, 1977, 136.
- 7. E. D. Cuesta and C. Avendano, J. Heterocyclic Chem., 1985, 22, 337.
- 8. T. Severin, B. Bruck, and P. Adhikary, Chem. Ber., 1966, 99, 3097.
- D. Pocar, S. Mariorana, and P. Dalla Croce, <u>Gazz. Chim. Ital</u>., 1968, 98, 949.
- K. Matsumoto, T. Uchida, Y. Ikemi, T. Tanaka, M. Asahi, T. Kato, and H. Konishi, <u>Bull. Chem. Soc. Jpn</u>, 1987, 69, 3645.
- Y. Tominaga, Y. Shiroshita, T. Kurokawa, H. Gotou, Y. Matsuda, and A. Hosomi, <u>J. Heterocyclic</u> Chem., in press.
- J. V. Greenhill, "Pyrazoles with Fused Six-membered Heterocyclic Rings" in Comprehensive Heterocyclic Chemistry" in Vol. 8, ed. by A. R. Katrizky and C. W. Rees, Pergamon Press, Oxford, 1984, p. 305.
- 13. V. Boekelheide and N. A. Federuk, <u>J. Org. Chem</u>., 1968, **33**, 2062.
- 14. B. M. Lynch and B. P. -L. Lem, J. Heterocyclic Chem., 1974, 11, 223.
- R. Huisgen, R. Grashey, and R. Krischke, <u>Justus Liebigs Ann. Chem.</u>, 1977, 506.
- 16. Satisfactory elemental analysis and spectral data were obtained for all new compounds.
- 17. Similar reaction mechanism for the formation of indolizines and 1-nitro-indolizines is shown in Refer. 3, 5, and 11 and the following paper:
 Y. Tominaga, et. al., <u>Yakugaku Zasshi</u>, 1984, 104, 440.