NEW SECOIRIDOIDS FROM ISERTIA HAENKEANA

Angel Rumbero-Sánchez and Purificación Vázquez Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain

<u>Abstract</u>- Eight new secoiridoid glycosides (7R)- and (7S)haenkeanoside (8) and (9), (7R)- and (7S)-isohaenkeanoside (10) and (11), (7R)- and (7S)-O-methylhaenkeanoside (12) and (13), and (7R)and (7S)-O-methylIsohaenkeanoside (14) and (15), were isolated from leaves of <u>Isertia</u> haenkeana, and their structures have been established on the basis of spectral data and chemical transformations. These compounds are the first report of any coumaroyl secoiridoid morroniside type with a trans- and <u>cis</u>configuration at acyl double bond. Moreover, compounds 12, 13, 14, and 15 exhibit a methoxy group (C-7) in the aglycone part.

The genus <u>Isertia</u> belongs to the Rubiaceae family, most of the species occurring in tropical and subtropical South America.¹ The only species studied of this genus have been the <u>Isertia hypoleuca</u> Benth,² from which several alkaloids of quinamine type have been isolated and distinguished,^{3,4} as well as the sterols and triterpenes -amyrin, -sitosterol and taraxasterol.⁵

Due to the scarce phytochemical work realizad on this genus we decided to realize a deep study on a second species of the same genus, the <u>Isertia haenkeana</u> D.C. In this work we discuss the isolation and characterization of a series of new secoiridoid glycosides of one sample of <u>Isertia haenkeana</u> D.C. collected in Costa Rica.

RESULTS AND DISCUSSION.

Fractionation of the chloroform to methanol extracts of dry leaves of <u>Isertia</u> <u>haenkeana</u> D.C. on a silica gel chromatography column followed by HPLC afforded fifteen secoiridoid glycosides, seven of which, namely sarracenin (1),⁶ kingiside (2),⁷ alpigenoside (3),⁷ (7<u>R</u>)- and (7<u>S</u>)-morronisides (4) and (5),⁷⁻¹⁰ and (7<u>R</u>)- and (7<u>S</u>)-7-<u>O</u>-methylmorronisides (6) and (7)¹¹ were known substances, and were identified by means of physical constants and spectral data.

Spectral data of the new secoiridoids reveal that they have a common skeleton of a

morroniside type, esterified through the C-6' hydroxy group of the glucose with a rest of coumaric acid. They constitute a mixture of C-7 epimers and C(2") C(3") double bond isomers. Their elucidation was based principally in the comparison of the 1 H- and 13 C-nmr spectra of the corresponding acetylated morroniside epimers (4) and (5) with those of their methylmorroniside derivatives 7-Q-(6) and (7).

For the structural elucidation, the mixture of epimers was separated by acetylation. However, we were unable to separate cis-trans isomers.

$R=R_1=H$, $R_2=\alpha-OH$	(4a) $R=R_1=Ac$, $R_2=\alpha-OAc$
$R=R_1=H$, $R_2=\beta-OH$	(5a) $R=R_1=Ac$, $R_2=\beta-OAc$
$R=R_1=H$, $R_2=a-OMe$	(6a) $R=R_1=Ac$, $R_2=\alpha-OMe$
$R=R_1=H$, $R_2=\beta$ -OMe	(7a) $R=R_1=Ac$, $R_2=\beta-OMe$
$R=H$, $R_1=t-A$, $R_2=\alpha-OH$	(8a) R=Ac, $R_1 = t - A$, $R_2 = \alpha - OAc$
$R=H$, $R_1=t-A$, $R_2=\beta-OH$	(9a) $= R = Ac$, $R_1 = t - A$, $R_2 = \beta - OAc$
$R=H$, $R_1=C-A$, $R_2=\alpha-OH$	(10a) R=Ac, $R_1 = \underline{c} - A$, $R_2 = \alpha - OAc$
$R=H$, $R_1=c-A$, $R_2=6-OH$	(11a) R=Ac, $R_1 = c - A$, $R_2 = \beta - OAc$
R=H, $R_1 = t - A$, $R_2 = \alpha - OMe$	(12a) R=Ac, $R_1 = \underline{t} - A$, $R_2 = \alpha - OMe$
R=H, $R_1 = t - A$, $R_2 = \beta - OMe$	(13a) R=Ac, $R_1 = t - A$, $R_2 = \beta - OMe$
$R=H$, $R_1=c-A$, $R_2=\alpha-OMe$	(14a) R=Ac, $R_1 = \underline{c} - A$, $R_2 = \alpha - OMe$
$R=H$, $R_1=c-A$, $R_2=\beta-OMe$	(15a) R=Ac, $R_1 = \underline{c} - A$, $R_2 = \beta - OMe$
	$ \begin{array}{l} R=R_{1}=H, \ R_{2}=\alpha-OH \\ R=R_{1}=H, \ R_{2}=\beta-OH \\ R=R_{1}=H, \ R_{2}=\beta-OMe \\ R=R_{1}=H, \ R_{2}=\beta-OMe \\ R=R_{1}=H, \ R_{2}=\beta-OMe \\ R=H, \ R_{1}=\pm-A, \ R_{2}=\alpha-OH \\ R=H, \ R_{1}=\pm-A, \ R_{2}=\alpha-OMe \\ R_{1}=A, \ R_{1}=\pm-A, \ R_{2}=\alpha-OMe \\ R_{1}=A, \ R_{1}=\pm-A, \ R_{2}=\alpha-OMe \\ R_{1}=A, \ R_{1}=A, \ R_{1}=A, \ R_{1}=A, \ R_{1}=A, \ R_{1}=A, \ $

(7R)-Haenkeanoside pentaacetate (8a) was obtained as an amorphous compound (512 mg) of molecular formula $C_{36}H_{42}O_{18}$ (elemental analysis); (a) D_{D}^{20} -57° (CHCl₃). (7<u>s</u>)-<u>Haenkeanoside pentaacetate</u> (9a) was also an amorphous compound (160 mg); $\left(a\right)_{D}^{20}$ -58^o (CHCl₃). These two epimers showed similar uv absorptions at 231 (ϵ 18,936) and 296 (ϵ 16,085) nm (methanol), and their ir spectra showed bands at v_{max} (KBr) 1760 (CO), 1715 (CO), 1640 (C=C) and 1605 cm⁻¹ (C=C).

On the basis of the 1,3-diaxial interactions,⁸ the ¹H-nmr spectra (Tables 1 and 2) showed that the more significative $\delta_{\rm H}$ values for the study of the configuration in C-7 are the corresponding signals for the protons attached to C-5, C-7 and C-8. The $\delta_{\rm H}$ for C-5H in the 7<u>R</u>- epimer (8a) appears at 2.85 ppm (dt, $J_{5,6ax}=12$ Hz, $J_{5,6eq}=4$ Hz and $J_{5,9}=4$ Hz) and in the 7<u>S</u>- epimer (9a) at 3.07 ppm. The major differences between both compounds are the chemical shifts for C-7H. Thus, in the 7<u>R</u>- epimer $\delta_{\rm H}$ 5.75 (dd, $J_{7,6ax}=10$ Hz and $J_{7,6eq}=2.5$ Hz) and in the 7<u>S</u>- epimer (9a) $\delta_{\rm H}$ is a broad signal at 6.14 ppm. Finally, $\delta_{\rm H}$ for C-8H in compound (8a) appears at 3.95 (dq, $J_{8,9}=3$ Hz and $J_{8,10-Me}=7$ Hz) and in the isomer (9a) at $\delta_{\rm H}$ 4.25 ppm. These assignments were supported by the ¹³C-nmr spectra⁹ (Table 3) which showed that $\delta_{\rm C}$ for C-5 is 29.9 ppm for the 7<u>R</u>- epimer (8a) and 25.8 ppm for the 7<u>S</u>- isomer (9a). The chemical shift for C-7 in the isomer (8a) was found at 93.7 ppm and at 91.2 ppm for the epimer (9a). Finally, $\delta_{\rm C}$ for C-8 appeared at 73.4 and 67.2 ppm for the 7<u>R</u>- and 7<u>S</u>- epimers (8a) and (9a), respectively.

Table 1. ¹H-Nmr spectral data of compounds 8a-15a (CDC1₃, 200 MHz, 8 ppm)

8a	9a	10a	11a	12a	13a	14a	15a
5.72 d	5.70 d	5.68 đ	5.67 d	5.63 d	5.70 d	5.59 d	5.67 d
7.45 s	7.44 s	7.45 s	7.45 s	7.48 s	7.42 s	7.42 s	7.42 s
2.85 dt	3.07 dt	2.85 dt	3.07 dt	2.69 dt	3.05 dt	2.69 dt	3.05 dt
1.35 m	1.55 m	1.35 m	1.55 m	1.35 m	1.42 m	1.35 m	1.42 m
2.10 m	2.00 m	2.10 m	2.00 m	2.05 m	1.92 m	2.05 m	1.92 m
5.75 dd	6.14 d	5.75 dd	6.14 d	4.40 dd	4.68 d	4.40 dd	4.68 d
3.95 dq	4.25 dq	3.95 dq	4.25 dq	3.82 m	4.20 dq	3.82 m	4.20 dq
1.71 m	1.79 m	1.72 m	1.79 m	1.70 m	1.69 m	1.70 m	1.69 m
1.36 d	1.28 d	1.34 d	1.31 d	1.34 d	1.30 d	1.35 d	1.31 d
6.41 d	6.40 đ	5.98 d	5.96 d	6.35 d	6.38 d	5.92 d	5.95 d
7.68 d	7.68 d	6.98 d	6.98 d	7.67 d	7.67 d	6.90 d	6.96 d
7.56 d	7.57 d	7.67 d	7.67 d	7.55 đ	7.55 d	7.56 d	7.56 d
7.13 d	7.14 đ	7.10 d	7.10 d	7.06 d	7.12 d	7.02 d	7.09 d
3.72 s	3.72 s	3.72 s	3.72 s	3.70 s	3.70 s	3.70 s	3,70 s
				3 .47 s	3.31 s	3.49 s	3.31 s
	8a 5.72 d 7.45 s 2.85 dt 1.35 m 2.10 m 5.75 dd 3.95 dq 1.71 m 1.36 d 6.41 d 7.68 d 7.56 d 7.13 d 3.72 s	8a9a 5.72 d 5.70 d 7.45 s 7.44 s 2.85 dt 3.07 dt 1.35 m 1.55 m 2.10 m 2.00 m 5.75 dd 6.14 d 3.95 dq 4.25 dq 1.71 m 1.79 m 1.36 d 1.28 d 6.41 d 6.40 d 7.68 d 7.68 d 7.56 d 7.57 d 7.13 d 7.14 d 3.72 s 3.72 s	8a 9a 10a 5.72 d 5.70 d 5.68 d 7.45 s 7.44 s 7.45 s 2.85 dt 3.07 dt 2.85 dt 1.35 m 1.55 m 1.35 m 2.10 m 2.00 m 2.10 m 5.75 dd 6.14 d 5.75 dd 3.95 dq 4.25 dq 3.95 dq 1.71 m 1.79 m 1.72 m 1.36 d 1.28 d 1.34 d 6.41 d 6.40 d 5.98 d 7.68 d 7.68 d 6.98 d 7.56 d 7.57 dd 7.67 d 7.13 d 7.14 d 7.10 d 3.72 s 3.72 s 3.72 s	8a 9a 10a 11a 5.72 d 5.70 d 5.68 d 5.67 d 7.45 s 7.44 s 7.45 s 7.45 s 2.85 dt 3.07 dt 2.85 dt 3.07 dt 1.35 m 1.55 m 1.35 m 1.55 m 2.10 m 2.00 m 2.10 m 2.00 m 5.75 dd 6.14 d 5.75 dd 6.14 d 3.95 dq 4.25 dq 3.95 dq 4.25 dq 1.71 m 1.79 m 1.72 m 1.79 m 1.36 d 1.28 d 1.34 d 1.31 d 6.41 d 6.40 d 5.98 d 6.98 d 7.68 d 7.67 d 7.67 d 7.67 d 7.13 d 7.14 d 7.10 d 7.10 d 3.72 s 3.72 s 3.72 s 3.72 s	8a 9a 10a 11a 12a 5.72 d 5.70 d 5.68 d 5.67 d 5.63 d 7.45 s 7.44 s 7.45 s 7.45 s 7.48 s 2.85 dt 3.07 dt 2.85 dt 3.07 dt 2.69 dt 1.35 m 1.55 m 1.35 m 1.55 m 1.35 m 1.35 m 2.10 m 2.00 m 2.10 m 2.00 m 2.05 m 5.75 dd 6.14 d 5.75 dd 6.14 d 4.40 dd 3.95 dq 4.25 dq 3.95 dq 4.25 dq 3.82 m 1.71 m 1.79 m 1.72 m 1.79 m 1.70 m 1.36 d 1.28 d 1.34 d 1.31 d 1.34 d 6.41 d 6.40 d 5.98 d 5.96 d 6.35 d 7.68 d 7.68 d 6.98 d 6.98 d 7.67 d 7.55 d 7.13 d 7.14 d 7.10 d 7.10 d 7.06 d 3.70 s 3.72 s 3.72 s 3.72 s 3.70 s 3.47 s	8a 9a 10a 11a 12a 13a 5.72 d 5.70 d 5.68 d 5.67 d 5.63 d 5.70 d 7.45 s 7.44 s 7.45 s 7.45 s 7.48 s 7.42 s 2.85 dt 3.07 dt 2.85 dt 3.07 dt 2.69 dt 3.05 dt 1.35 m 1.55 m 1.35 m 1.55 m 1.35 m 1.35 m 1.42 m 2.10 m 2.00 m 2.10 m 2.00 m 2.05 m 1.92 m 5.75 dd 6.14 d 5.75 dd 6.14 d 4.40 dd 4.68 d 3.95 dq 4.25 dq 3.95 dq 4.25 dq 3.82 m 4.20 dq 1.71 m 1.79 m 1.72 m 1.79 m 1.70 m 1.69 m 1.36 d 1.28 d 1.34 d 1.31 d 1.34 d 1.30 d 6.41 d 6.40 d 5.98 d 6.98 d 6.35 d 6.38 d 7.68 d 7.67 d 7.67 d 7.67 d 7.55 d 7.55 d 7.13 d 7.14 d 7.10 d 7.10 d 7.06 d 7.12 d 3.72 s 3.72 s	8a 9a 10a 11a 12a 13a 14a 5.72 d 5.70 d 5.68 d 5.67 d 5.63 d 5.70 d 5.59 d 7.45 s 7.44 s 7.45 s 7.45 s 7.48 s 7.42 s 7.42 s 2.85 dt 3.07 dt 2.85 dt 3.07 dt 2.69 dt 3.05 dt 2.69 dt 1.35 m 1.55 m 1.35 m 1.55 m 1.35 m 1.42 m 1.35 m 2.10 m 2.00 m 2.10 m 2.00 m 2.05 m 1.92 m 2.05 m 5.75 dd 6.14 d 5.75 dd 6.14 d 4.40 dd 4.68 d 4.40 dd 3.95 dq 4.25 dq 3.95 dq 3.82 m 4.20 dq 3.82 m 1.71 m 1.79 m 1.72 m 1.79 m 1.70 m 1.69 m 1.70 m 1.36 d 1.28 d 1.34 d 1.31 d 1.34 d 1.30 d 1.35 d 6.41 d 6.40 d 5.98 d 5.96 d 6.35 d 6.38 d 5.92 d 7.68 d 7.67 d 7.67 d 7.67 d 7.67 d 7.67 d 7.55 d

Compound	J _{1,9}	^J 5,6ax	^J 5,6eq	^J 5,9	J _{7,6ax}	^J 7,6eq	^J 8,9	^J 8,10	^J 2",3"	^J 5",6"
8a	8.8	12.6	4.6	4.6	9.8	2.3	2.5	6.8	16	8.5
9a	8.8	12.6	4.6	4.6	3	0	3	7	16	8.6
10a	8.8	12.6	4.6	4.6	9.8	2.3	2.5	6.8	12.7	8.5
lla	8.8	12.6	4.6	4.6	3	0	3	7	12.8	8.4
12a	8.5	12.5	4.5	4.5	10	2.5	-	-	16	8.6
13a	8.7	12.5	4.5	4.5	3	0	3	7	16	8.6
14a	8.5	12.5	4.5	4.5	10	2.5	-	-	12.6	8.6
15a	8.7	12.5	4.5	4.5	3	0	3	7	12.7	8.6

Table 2. Coupling constants for the protons in compounds 8a-15a.

Table 3. ¹³C- Nmr spectral data of compounds 8a-15a (CDCl₃,50.32 MHz, δ ppm).

Carbon	8a	9a	10a	11a	12a	13a	14a	15a
1	94.7	94.4	94.7	94.4	95.2	94.5	95.2	94.5
3.	152.4	152.5	152.3	152.5	152.3	152.1	152.3	152.1
4	110.2	111.1	110.2	111.1	110.4	111.3	110.3	111.3
5	29.9	25.8	29.9	25.8	29.9	25.8	29.9	25.8
6	32.9	31.2	32.9	31.2	33.9	32.2	33.9	32.2
7	93.7	91.2	93.7	91.2	102.6	97.5	102.6	97.5
8	73.4	67.2	73.4	67.2	72.5	63.9	72.5	63.9
9	38.8	39.1	38.8	38.6	39.1	39.0	38.7	38.7
10	18.7	18.8	18.7	19.0	18.7	18.6	19.1	18.9
11	166.4	166.5	166.3	166.5	166.5	166.4	166.5	166.4
1'	96.6	96.8	96.6	96.8	96.8	96.6	96.8	96.6
2'	70.9	71.0	70.9	71.0	70.8	70.8	70.8	70.8
3'	72.0	72.1	71.8	72.1	72.0	71.8	72,1	71.7
4'	68.5	68.6	68.5	68.6	68 4	68.4	68.1	68.1
5'	72.5	72.6	72.5	72.6	72.2	72.4	72.2	72.4
6'	61.9	61.8	61.9	61.8	61.8	61.8	61.6	61.8
1"	166.1	166.1	165.0	166.1	166.1	165.9	166.1	165.9
2"	117.3	117.3	118.6	118.7	117.3	117.2	118.1	118.7
3"	144.4	144.6	143.7	143.9	144.3	144.2	143.9	143.9
4"	131.8	131.3	132.0	132.0	131.8	131.7	132.4	132.2
5"	129.2	129.4	131.1	130.8	129.1	129.1	130.8	130.8
6"	122.0	122.1	121.0	121.2	121.9	121.9	121.9	121.2
`7"	157.1	152.1	151.0	151.0	152.0	152.1	152.0	152.1
11-0СН _а	51.3	51.4	51.3	51.4	51.2	51.0	51.2	51.0
7-0СН ₃					56.0	54.3	56.0	54.3

A comparison of the ¹H-nmr spectral data of the haenkeanosides $(7\underline{R})$ (8) and $(7\underline{S})$ (9) and of the morronisides $(7\underline{R})$ (4) and $(7\underline{S})$ (5) indicates that the esterification with p-coumaric acid takes place at the C-6' hydroxy group of glucose moiety since the signals due to the protons attached to C-6' are shifted downfield. Thus, $\delta_{\rm H}$ is 4.35 (m) in (8) and (9), and 3.87 in (4) and (5), whereas all other glucose signals are almost unchanged.¹² The p-coumaric acid subunit in these compounds shows to be the trans- isomer: $\delta_{\rm H}$ (C-2"H) 6.40, J=16 Hz and $\delta_{\rm H}$ (C-3"H) 7.68, J=16 Hz.

Further confirmation of the proposed structure came from the 13 C-nmr spectra of (8) and (9) which were very similar to the spectra of morronisides (4) and (5), except for the signals due to the <u>trans-p</u>-coumaroyl group, so that the ester linkage cannot be on the secoiridoid molety. The chemical shifts of the four glucose C-atoms (C-1', C-2', C-3', and C-4') were identical in these compounds, so that the linkage of the <u>p</u>-coumaric acid can only be at the C-6' hydroxy group.

The signal for C-6'is shifted downfield by 1.4 ppm and the corresponding of the carbon atom at the β -position, C-5', is shifted upfield by 2.8 ppm. In fact, the downfield shift of the α -C-signal and the upfield shift of the β -C-signal upon acylation is well documented.¹³

<u>(7R) - and (7S)-Isohaenkeanoside pentaacetates</u> (10a) and (11a). Due to the impossibility to separate both isomers either by TLC or HPLC (total amount: 168 mg), the nmr spectral data of these compounds were deduced from the data of isomers 8a and 9a, obtained by synthesis. The only difference of these secoiridoids with the previous ones is that the <u>p</u>-coumarcyl residue was now in the <u>cis</u>- form. According to this structural fact, the ¹H-nmr spectra (Tables 1 and 2) showed $\delta_{\rm H}$ (C-2"H) 5.98 (J=13 Hz) and $\delta_{\rm H}$ (C-3"H) 6.98 (J=13 Hz) for compound 10a, and $\delta_{\rm H}$ (C-2"H) 5.96 (J=13 Hz) and $\delta_{\rm H}$ (C-3"H) 6.98 (J=13 Hz) for compound 11a. On the other hand, the ¹³C-nmr spectra showed only a sligth difference between the chemical shifts for the C-2" and C-3" ($\Delta \delta = +1.4$ and -0.7 ppm, respectively), which is the usual feature for this class of <u>cis-trans</u> isomers.

(7R)-O-Methylhaenkeanoside tetraacetate (12a) was obtained as an amorphous compound (1.024 g) with molecular formula $C_{35}H_{42}O_{17}$ (elemental analysis); (α) $_D^{20}$ -33° (CHCl₃). (7S)-O-Methylhaenkeanoside tetraacetate (13a) was also an amorphous compound (952 mg); (α) $_D^{20}$ -59° (CHCl₃). These two epimers showed similar uv absorptions at 231 (ϵ 17,703) and 296 (ϵ 14,444) nm in methanol and their ir spectra showed bands at v_{max} 1760 (CO), 1715 (CO), 1640 (C=C) and 1605 cm⁻¹ (C=C). On the basis of the ¹H- and ¹³C-nmr spectral data, these natural products were found to be methyl derivatives at C-7 of

(10a) and (11a) , R=R'=Ac(14a) and (15a) , R=Ac, $R'=CH_3$

the corresponding haenkeanosides. ¹H-Nmr spectra showed singlet signals at 3.47 ppm for the 7R- epimer (12a) and at 3.31 ppm for 7S-epimer (13a), assigned to the methoxycarbonyl group at C-7. The C-7H chemical shift for the 7R- epimer (8a) was 5.57 ppm, whereas their methyl derivative 12a was 4.40 ppm. In the 75- epimer (9a), this signal was observed at 6.14 ppm, and in its corresponding methyl derivative 13a at 4.68 ppm. The ¹³C-nmr spectra showed quaternary carbon signals at 55.5 and 54.3 ppm for the 7R- (12a) and 7S- (13a) epimers, respectively, which were assigned to the methoxycarbonyl group at C-7. The chemical shift for C-7 in compound 8a was 93.7 ppm, but 102.4 ppm for its methyl derivative 12a. For the 75- epimer (9a) this carbon signal was present at δ_{C} 91.2 and at δ_{C} 97.7 for its methyl derivative (13a). Further evidence supporting these structures (12a) and (13a) was provided by the methylation of haenkeanosides (8) and (9) with methanol and phosphoric acid. (7R) - and (7S)-O-Methylisohaenkeanoside tetraacetates (14a) and (15a). These secoiridoids (266 mg and 238 mg, respectively) were the cis- isomers at the pcoumarcyl residue of the corresponding compounds (12a) and (13a). Accordingly, (C-2"H) was found at 5.92 (J=13 Hz) ppm and (C-3"H) at 6.90 (J=13 Hz) ppm in epimer (14a). Similarly, (C-2"H) was found at 5.95 (J=12 Hz) ppm and (C-3"H) at 6.96 (J=13 Hz) ppm in compound (15a). As for the above mentioned isomers (10a) and (11a), the ¹³C-nmr spectra showed only small differences between the chemical shifts of C-2" and C-3" $(\Delta \delta = +1.4 \text{ and } -0.4 \text{ ppm}, \text{ respectively})$ as expected for these isomers. Hemisynthesis of the new secoiridoids. To confirm the structure of the new compounds we performed the synthesis of (8a) to (15a) from the morronisides (4) and (5) (see

Scheme). Esterification of the C-6' hydroxy group of the glucose moiety with <u>t</u>acetylcoumaroyl chloride followed by acetylation afforded compounds (8a) and (9a). Compounds (12a) and (13a) were prepared similarly, after methylation of morronisides (4) and (5). Finally, the <u>cis</u>-isomers (10a), (11a), (14a), and (15a) were obtained from their respective trans-isomers by irradiation at 350 nm.

EXPERIMENTAL.

Optical rotations were measured with a Perkin-Elmer 141 polarimeter at 20-25°C a Perkin-Elmer 124 double beam (c=1.00). Ūv spectra were measured with Nicolet 5 spectrophotometer and ir spectra were recorded on а DXFTTR spectrophotometer. Mass spectra were obtained with an Hewlett-Packard GC-MS 5985B instrument. ¹H- and ¹³C-nmr spectra were recorded on a Bruker SY-200 spectrometer at 200 MHz and 50.3 MHz, respectively, the chemical shifts being in ppm from SiMe₄ (δ =0) as internal standard. The DEPT technique was used in the ¹³C-nmr spectra. HPLC was performed on a Knauer liquid chromatograph using a polygosil 60-C₁₈ column.

<u>Isolation of secoiridoid glucosides</u>. The air-dried plant material (1.5 kg) of <u>Isertia</u> <u>haenkeana</u> collected in July, 1981 in Costa Rica (Palmar Norte), (vouchers of the plant were deposited in the herbarium of Natural History museum of San José, N. 3046), was extracted with chloroform, ethyl acetate, acetone and methanol.

The chloroform fraction (60 g) was chromatographed through silica gel. Elution with benzene-ethyl acetate (4:1) yielded sarracenin (1) (120 mg). The other secoiridoids were isolated from the ethyl acetate (66.82 g), acetone (136.49 g), and methanol (190.28 g) fractions.

The ethyl acetate fraction was chromatographed through silica gel and eluted successively with ethyl acetate-acetone (3:1) and chloroform-methanol (6:1) yielding a mixture of products that were grouped from their R_f values. The later fractions were acetylated with acetic anhydride and pyridine at room temperature for 12 h. The acetylated mixture of compounds (8a), (9a), (10a), and (11a) was chromatographed with chloroform-acetone (1:15) to give the two epimers in C-7 but no the <u>cis-trans</u> isomers. Similarly, elution with chloroform-ethyl acetate (4:1) allowed the separation of epimers at C-7 (12) and (14) from the epimers at C-7 (13) and (15). Compounds (6a) and (7a) were isolated by elution with chloroform-ethyl acetate (2:1).

The remaining products, the already known compounds (2), (3), (4), and (5) were separated by semipreparative HPLC, using a Polygosil $60-C_{18}$ (5 μ m) column; solvent: methanol-water (1:4), 4 ml/min.

<u>Sarracenin</u> (1). 120 mg of white crystalline material mp 127-128^oC (benzene-ethyl ether). Uv: (EtOH) λ_{max} 232 (ϵ 9,660) nm. Ir: (KBr) ν_{max} 2970, 1707, 1640, 1440, 1380, 920, 860, and 818 cm⁻¹. Ms: m/z (%) 226 (M⁺, 12), 180 (12), 165 (13), 148 (14), 137 (17), 121 (20),109 (16), 96 (19), 69 (100), and 41 (71). ¹H-Nmr: (CDCl₃), 1.33 (3H, d, J_{9,8}=6.5 Hz, C-9H), 1.68 (2H, m, C-6H), 2.37 (1H, m, C-4H), 2.97 (1H, m, C-5H), 3.76 (3H, s, C-11H), 4.22 (1H, q, J_{8,9}=6.5 Hz, C-8H), 4.98 (1H, d, J_{3,4}=3 Hz, C-3H), 5.79 (1H, t, J_{7,6}=2 Hz, C-7H), and 7.46 (1H, s, C-2H). ¹³C-Nmr: (CDCl₃) 18.62 (C-9), 22.12 (C-4 or C-5), 32.32 (C-4 or C-5), 35.10 (C-6), 51.25 (C-11), 68.94 (C-8), 88.10 (C-3 or C-7), 112.37 (C-1), 91.67 (C-3 or C-7), 149.99 (C-2), and 166.66 (C-10).

<u>Tetraacetylkingiside</u> (2a). Compound (2) was acetylated with Ac_2O/Py at room temperature. Work-up in the usual manner afforded (2a), mp 164-165°C, $(\alpha)_D^{20} = -91^{\circ}$ (CHCl₃). Uv: (MeOH) λ_{max} 233 (ϵ 10,715) nm. Ir: (KBr) v_{max} 1755, 1715, 1655, and 1450 cm⁻¹. ¹H-Nmr: (CDCl₃) 1.50 (3H, d, J_{8,10}=7 Hz, C-10H), 2.35 (1H, m, J_{1,9}=5 Hz, J_{5,9}=4.5 Hz and J_{8,9}=3 Hz, C-9H), 2.80 (2H, AB system, J_{6a,6b}=17 Hz, J_{5,6a}=8 Hz and J_{5,6b}=5.5 Hz, C-6H), 3.23 (1H, m, C-5H), 3.75 (3H, s, C-11Me), 4.60 (1H, m, C-8H), 5.45 (1H, d, J_{1,9}=7 Hz, C-1H), and 7.45 (1H, s, C-3H).

<u>Pentaacetylalpigenoside</u> (3a). Compound (3) was acetylated in the usual manner affording (3a). Uv: (MeOH) λ_{max} 233 (ϵ 10,232) nm. Ir: (KBr) ν_{max} 1750, 1715, 1655, 1440, and 1405 cm⁻¹. ¹H-Nmr: (CDCl₃) 1.33 (3H, d, $J_{10,8}$ =6.5 Hz, C-10H), 2.15 (1H, m, C-9H), 2.58 (2H, AB system, $J_{6a,6b}$ =16.5 Hz, $J_{5,6a}$ =7.5 Hz and $J_{5,6b}$ =5.5 Hz, C-6H), 3.29 (1H, m, C-5H), 3.64 and 3.69 (6H, s, -COOMe), 3.78 (1H, m, C-8H), 5.60 (1H, d, $J_{1,9}$ =7 Hz, C-1H), and 7.46 (1H, s, C-3H).

<u>Pentaacetylmorronisides</u> (4a) and (5a). Compounds (4) and (5) afforded both epimers (4a) and (5a) after acetylation in the usual manner. Compound (4a), mp 144-145^oC. Uv: (MeOH) λ_{max} 237 (ϵ 10,471) nm. Ir: (KBr) v_{max} 1715

and 1640 \rm{cm}^{-1} .

¹H-Nmr: (CDCl₃) 1.33 (1H, m, C-6H_{ax}), 1.35 (3H, d, $J_{10,8}=7$ Hz, C-10H), 1.70 (1H, m, C-9H), 2.10 (1H, m, C-6H_{eq}), 2.84 (1H, dt, $J_{5,6ax}=12$ Hz, $J_{5,6eq}=4$ Hz and $J_{5,9}=4$ Hz, C-5H), 3.72 (3H, s, C-11H), 3.95 (1H, dq, $J_{8,9}=3$ Hz and $J_{8,10}=7$ Hz, C-8H), 5.70 (1H, d, $J_{1,9}=9$ Hz, C-1H), 5.75 (1H, dd, $J_{7,6ax}=10$ Hz and $J_{7,6eq}=2.5$ Hz, C-7H), and 7.43 (1H, s, C-3H). ¹³C-Nmr: (CDCl₃, DEPT) 18.8 (C-10), 30.1 (C-5), 33.1 (C-6), 38.9 (C-9), 51.3 (C-0Me), 61.8 (C-6'), 68.6 (C-4'), 71.0 (C-2'), 72.1 (C-3'), 72.6 (C-5'), 73.6 (C-8), 93.9 (C-7), 94.8 (C-1), 96.8 (C-1'), 110.3 (C-4), 152.5 (C-3), and 166.4 (C-11). Compound (5a), mp 151-152°C. ¹H-Nmr: (CDCl₃) 1.28 (3H, d, $J_{10,8}=7$ Hz, C-10H), 1.53 (1H, m, C-6H_{ax}), 1.80 (1H, m, C-9H), 2.0 (1H, m, C-6H_{eq}), 3.09 (1H, dt, $J_{5,6ax}=12$ Hz, $J_{5,6eq}=4$ Hz and $J_{5,9}=4$ Hz, C-5H), 3.72 (3H, s, C-11H), 4.31 (1H, m, C-8H), 5.69 (1H, d, $J_{1,9}=9$ Hz, C-1H), 6.14 (1H, d, $J_{7,6ax}=3$ Hz, C-7H), and 7.43 (1H, s, C-3H). ¹³C-Nmr: (CDCl₃, DEPT), 18.8 (C-10), 26.0 (C-5), 31.3 (C-6), 39.2 (C-9), 51.3 (C-0Me), 61.7 (C-6'), 67.3 (C-8), 68.7 (C-4'), 71.1 (C-2'), 72.1 (C-3'), 72.6 (C-5'), 91.3 (C-7), 94.4 (C-1), 96.8 (C-1'), 110.1 (C-4'), 152.5 (C-3), and 166.6 (C-11).

Tetraacety1-7-O-methylmorronisides (6a) and (7a).

Compound (6a), mp 144-145 °C. Uv: (MeOH) λ_{max} 236 (ϵ 16,595) nm. Ir: (KBr) ν_{max} 1760, 1750, 1705, and 1620 cm⁻¹. ¹H-Nmr: (CDCl₃) 1.34 (3H, d, J_{10,8}=7 Hz, C-10H), 1.68 (1H, m, C-9H), 2.78 (1H, dt, J_{5.6ax}=12 Hz, J_{5.6eq}=4 Hz and J_{5.9}=4 Hz, C-5H), 3.49 (3H, s, C-70Me), 3.71 (3H, s, C-110Me), 4.41 (1H, dd, J_{7,6ax}=10 Hz and J_{7,6eq}=2.5 Hz, C-7H), 5.67 (1H, d, J_{1.9}=9 Hz, C-1H), and 7.42 (1H, s, C-3H). ¹³C-Nmr: (CDCl₃, DEPT), 18.4 (C-10), 29.9 (C-5), 33.8 (C-6), 38.9 (C-9), 50.9 (C-110Me), 55.5 (C-70Me), 61.6 (C-6'), 68.6 (C-4'), 70.7 (C-2'), 71.6 (C-8), 72.0 (C-3'), 72.5 (C-5'), 95.1 (C-1), 96.7 (C-1'), 102.4 (C-7), 110.7 (C-4), 152.0 (C-3), and 166.1 (C-11). Compound (7a), mp 103-104°C. ¹H-Nmr: (CDCl₃) 1.27 (3H, d, J_{10,8}=7 Hz, C-10H), 1.45 (1H, m, C-6H_{ax}), 1.72 (1H, m, C-9H), 1.92 (1H, m, C-6H_{eq}), 3.05 (1H, dt, J_{5,6ax}=12 Hz, J_{5.6eq}=4 Hz and J_{5.9}=4 Hz, C-5H), 3.34 (3H, s, C-70Me), 3.71 (3H, s, C-110Me), 4.20 (1H, m, C-8H), 4.73 (1H, d, J_{7.6ax}=2.7 Hz, C-7H), 5.70 (1H, d, J_{1.9}=9 Hz, C-1H), and 7.43 (1H, s, C-3H). ¹³C-Nmr: (CDCl₃, DEPT), 18.6 (C-10), 26.1 (C-5), 32.6 (C-6), 39.4 (C-9), 51.0 (C-110Me), 54.3 (C-70Me), 61.7 (C-6'), 64.1 (C-8), 68.6 (C-4'), 71.0 (C-2'}, 72.0 (C-3'), 72.6 (C-5'), 94.7 (C-1), 96.7 (C-1'), 97.7 (C-7), 111.7 (C-4), 152.1 (C-3), and 166.5 (C-11).

Compounds (8a)-(15a). See Tables 1,2, and 3.

<u>7-O-Methylmorronisides</u> (6) and (7). A solution of the mixture of (4) and (5) (250 mg, 0.6 mmol) in methanol (12.5 ml) and phosphoric acid (0.05 ml) was refluxed for 24 h. Evaporation of the solvent afforded compounds (6) and (7). The compounds were identified by acetylation (Ac_2O/py), which gave (6a) and (7a), identical to the above described derivatives.

(7R)- and (7S)-Haenkeanoside pentaacetates (8a) and (9a). To morronisides (4) and (5) (325 mg, 0.8 mmol) in dry pyridine (4 ml) at 0° C was added dropwise a solution of <u>t</u>-acetylcoumaroyl chloride (200 mg, 0.89 mmol) in pyridine (1 ml). The mixture was left standing overnight at -5° C. After usual work up 60 mg of crude mixture was obtained. This mixture was inmediately acetylated (Ac₂O/Py) to (8a) and (9a), identical to the compounds described above.

(7R) - and (7S) -O-Methylhaenkeanoside tetraacetates (12a) and (13a). The preparation of compounds (12a) and (13a) was performed similarly, from (7R) - and (7S) -O-

methylmorronisides.

(7R) - and (7S) - Isohaenkeanoside pentaacetates (10a) and (11a). A solution of the mixture of (8a) and (9a) (500 mg, 0.65 mmol) in methanol (250 ml) was irradiated for 24 h at 350 nm under argon with a HQL 125 W lamp. The solvent was evaporated under vacuum to leave a mixture of the <u>cis</u> and <u>trans</u> isomers, in a 80% yield of <u>cis</u>-isomer (isohaenkeanoside) and 20% of <u>trans</u>-isomer (haenkeanoside). This mixture could not be separated by silica gel cromatography or HPLC.

(7R) - and (7S) -O-Methylisohaenkeanoside tetraacetates (14a) and (15a). The synthesis of these compounds (14a) and (15a) was performed in a similar manner as above, using (7R) - and (7S) -O-methylhaenkeanoside tetraacetates (12a) and (13a).

<u>Acknowledgements.</u> Samples of <u>Isertia haenkeana</u> were kindly provided by Mr. L. Poveda (Nacional museum, San José, Costa Rica). We are grateful to Dr. P. Hoet for his active cooperation and to the late Dr. J. Borges for his encouragement at the beginning of this work. Financial support by Rio Ródano, S.A. is also gratefully acknowledged.

REFERENCES.

1. M.C. García-Kirbride, Brittonia, 1979, 31, 313.

- 2. H. Bohrmann, C. Lau-Cam, J. Tashiro, and H.W. Youngken, Jr., Phytochemistry, 1969, 8, 645.
- 3. C. Lau-Cam and J. Tashiro, Phytochemistry, 1971, 10, 1655.
- 4. A. Esterl, S. Gäb, and D. Bieniek, Planta Medica, 1983, 49, 244.
- 5. C. Lau-Cam, Phytochemistry, 1973, 12, 475.
- D.H. Miles, U. Kokpol, J. Bhattacharya, L. Atwood, K.E. Stone, T.A. Bryson, and C. Wilson, J. Am. Chem. Soc., 1976, 28, 1569.
- 7. F. Bailleul, A.M. Leveau, and M. Durand, J. Nat. Prod., 1981, 44, 573.
- 8. H. Inouye, S. Tobita, Y. Akiyama, K. Ito, and T. Shingu, <u>Chem. Pharm. Bull.</u>, 1973, 21, 846.
- 9. S. Vesato, M. Veda, H. Inouye, H. Kuwajima, M. Yatsuzuka, and K. Takaishi, Phytochemistry, 1984, 23, 2535.
- 10. G.A. Cross and O. Sticher, Helv. Chim. Acta, 1986, 69, 1113.
- 11. T. Endo and H. Taguchi, Yakugaku Zasshi, 1973, 93, 30.
- 12. T. Hase, T. Iwagawa, and M.N. Dave, Phytochemistry, 1985, 24, 1323.
- 13. R.K. Chadhuri, F.U. Afifi-Yazar, O. Sticher, and T. Winkler, <u>Tetrahedron</u>, 1980, 36, 2317.

Received, 18th July, 1988