PALLADIUM CATALYSED ARYLATION OF CHROM-3-EN-4-OL ACETATES VIA THEIR TRIBUTYLTIN ENOLATES

Dervilla M.X. Donnelly*a, Jean-Pierre Finetb, and Paul H. Stensona

^aDepartment of Chemistry, University College, Dublin, Ireland. ^bFaculté des Sciences St. Jérome, 13397 Marseille Cedex 13, France.

Dedicated with admiration and respect to Professor Sir Derek Barton on the occasion of his 70th birthday.

<u>Abstract</u> — Arylation of *in situ* generated chrom-3~en-4-ol tributyltin enolates with aryl bromide in the presence of a catalytic amount of PdCl₂[(o-tolylphosphine)₃]₂ gives moderate to good yields of the corresponding isoflavanones.

Selective monoarylation of chroman-4-ones is a highly desirable synthesis of isoflavanones and of their further elaborated structures. A variety of arylation methods have been described, but they generally require special reagents or drastic reaction conditions totally incompatible with sensitive functionalities¹. In our first approach directed towards the synthesis of variously substituted isoflavanones, we have described the use of pentavalent organobismuth derivatives². However the generality of the method was limited by the number of available bismuth derivatives. Among the newer methods of $arylation^3$, the palladium mediated arylations have been most widely used. Heck's arylation has been applied to the synthesis of isoflavanones⁴. However, it requires toxic arylmercury derivatives and stoichiometric amounts of the expensive palladium acetate to generate in situ the arylpalladium reagents. These drawbacks are avoided in a recently reported reaction: the palladium catalysed arylation of in situ generated tributyltin enolates⁵. We now describe our results on the extension of this procedure to the arylation of chroman-4-ones. The enol acetates 1 and 2 of chroman-4-one 3 and of 7-benzyloxychroman-4-one 4 respectively were prepared by condensation of the chroman-4-one with isopropenyl acetate in the presence of p-toluenesulfonic acid.

aryl bromides were reacted with the enol acetate A series of and methoxide the presence of catalytic tributyltın in amount of а dichloro-bis-(tri-o-tolylphosphine)palladium 6 . The best yields of isoflavanones were obtained when a lesser amount of the aryl bromide was used (1.5 eq. of the enol acetate and 1 eq. of the aryl bromide). When equimolar amounts were used, significant quantities of biaryl derivatives were detected.

Table 1. Isoflavanones Prepared by the Palladium Catalysed Arylation.

Formula	R 1	R ²	R 3	Ref.
6	н	C ₆ H ₅	н	8
7	н	$C_{6}H_{5}$	C ₆ H ₅	9
9	Н	4'-MeO-C6H4	Н	4 b
10	н	4'-Me0-C ₆ H ₄	4'-MeO-C6H4	12
1 2	н	2'-MeO-C6H4	Н	12
15	Н	4'-Me-C ₆ H ₄	Н	4 b
17	Н	C ₆ H ₅ -CH ₂	Н	10
18	C ₆ H ₅ CH ₂ O	C ₆ H ₅	Н	11
19	C ₆ H ₅ CH ₂ O	C ₆ H ₅	C ₆ H ₅	2

16: C₆H₅-CH₂Br

Br R¹ R² 5: R¹ = R² = H 8: R¹ = H, R² = McO

13: $R^1 = H, R^2 = R^3 = 2$ -MeOC₆H₄ (Ref. 12) **11:** $R^1 = MeO, R^2 = H$ **20:** $R^1 = C_6H_5CH_2O, R^2 = R^3 = C_6H_5$ (Ref. 12) **14:** $R^1 = H, R^2 = Me$

Isoflavanone and 7-benzyloxylsoflavanone were obtained in good yields together with small amounts of the α, α -diphenyl derivatives. Lower yields were obtained in the case of substituted isoflavanones, as partial thermal decomposition of chrom-3-en-4-ol acetate occurred as well as competing side reactions leading to small amounts of diphenylated products, e.g. 3,3-diphenylchroman-4-one, 2-hydroxy- α -(2'-methoxyphenyl)chalcone and 3,3-di-(4'-methoxyphenyl)chroman-4-one. The unexpected formation of the chalcones 13 and 20 probably arises through aryl migration and ring opening of the 3,3-diarylchroman-4-one.

Substrate	Aryl Bromıde	Reaction Conditions ⁶	Products (%) ^a
1	5	A, 4h	6(61), 7(2), 3(14)
1	5	B, 7h	6(52), 7(3), 3(24)
1	8	A, 20h	9(26), 10(10), 3(40)
1	11	A, 25h	12(33), 13(8), 3(43)
1	11	B, 28h	1 2 (24), 13 (7), 3 (34)
1	14	A, 20h	15(38), 3(42)
1	16	A, 22h	17 (30), 3 (63)
2	5	A, 12h	18(42), 19(9), 20(5), 4(32)
2	5	B, 22h	18(49), 19(3), 20(6), 4(32)

Table 2. Palladium Catalysed Reactions of Tributyltin Enolates 1 and 2.

a - All yields are based on the enol acetate.

The reaction was also extended to the synthesis of homoisoflavanone, through reaction with benzyl bromide. However, only a modest yield (30%) of the homoisoflavanone was obtained, which in this case does not compete favourably with existing methodology⁷.

Although only moderate yields are obtained for the synthesis of substituted isoflavanones, this represents nevertheless the first direct entry to the 2'-substituted isoflavanones, from chroman-4-ones, thus allowing further elaboration to pterocarpans and rotenoids. Further studies are now under way to improve the yields of this new synthetic approach.

ACKNOWLEDGEMENTS

This work was made possible by a CNRS-NBST-RIA Exchange Fellowship to P.H.S.

REFERENCES

- D. Caine in Carbon-Carbon Bond Formation, ed. by R.L. Augustine, M. Dekker, New York, Vol 1, 1979 p.152.
- 2. D.H.R. Barton, D.M.X. Donnelly, J.-P. Finet, and P.H. Stenson, *Tetrahedron*, in press.

- 3. R.A. Abramovitch, D.H.R. Barton, and J.P.Finet, Tetrahedron, 1988, 44, 3039.
- a) R.F. Heck, J. Am. Chem. Soc., 1968, 90, 5535; b) R. Saito, T. Izumi, and A. Kasahara, Bull. Chem. Soc. Jpn., 1973, 46, 1776.
- 5. M. Kosugi, I. Hagiwara, T. Sumiya, and T. Migita, Bull. Chem. Soc. Jpn., 1984, 57, 242.
- 6. In a typical experiment : a stirred solution of the chrom-3-en-4-ol acetate, tributyltin methoxide and aryl or benzyl halide in anhydrous toluene (5ml per g of enol acetate) was heated under argon at 100°C for the time indicated. The solvents were distilled off and the oily residue partitioned by flash column chromatography (eluant : gradient of hexane-methylene dichloride). Conditions A : 1 molar eq. of the aryl bromide, 1.5 molar eq. of the aryl bromide, 1 molar eq. of the enol acetate and 1.5 molar eq. of Bu3SnOMe.
- L. Farkas, A. Gottsegen, M. Nogradi, and J. Streliski, Tetrahedron., 1971, 27, 5049.
- 8. N. Inoue, Sci. Rep., Tohoku Univ., Ser. 1, 1961, Vol. 45, 63.
- 9. R. Hüttel, K. Franke, H. Martin, and J. Riedl, Chem. Ber., 1960, 93, 1433.
- 10. B.S. Kirkiacharian, J. Chem. Soc., Chem. Comm., 1975, 162.
- S.K. Aggarwal, S.K. Grover, and T.R. Seshadri, Indian J. Chem., 1969, 7, 1059.
- 12. 10 : mp 186°C (methanol-hexane), v_{max} (CHCl₃) 1701, 1682 and 1626 cm⁻¹; λ_{max} (CHCl₃) 252(12 987) and 320(4 204) nm(ε); δ (CDCl₃ 270 MHz) 7.99 6.73(12H, m, ArH), 5.48(1H, d, J 11.72 Hz, H-2A or H-2B), 4.12(1H, d, J 11.72 Hz, H-2B or H-2A), 3.76(3H, s, OCH₃), and 3.74(3H, s, OCH₃); m/z 360 (M⁺, 69), 253(12), 240(100) and 225(35).
 - 12 : oil, $\cup_{max}(CHC1_3)$ 1690 and 1606 cm⁻¹; δ (CDC1₃ 270 MHz) 7.94 7.91(1H, m, H-5), 7.46 7.39(1H, m, H-6), 7.25 6.84(6H, m, ArH), 4.63 4.27(3H, m, H-3 and H-2), and 3.71(3H, s, OCH₃); m/z 254 (M⁺, 49), 223(4), 134(100), 119(72), 91(53), and 65(12).

13 : mp 81-82°C (95% ethano1); υ_{max} (CHCl₃) 1633, 1590 and 1488 cm⁻¹; λ_{max} (CHCl₃) 245(16 418) and 343(11 027) nm(ε); δ (CDCl₃ - 270 MHz) 12.30(1H, s, sh. ex-D₂O, OH), 7.90 - 7.87(1H, dd, J 8.06 and 1.83 Hz, H-5), 7.31(1H, s, H-1), 7.44 - 6.80(11H, m, ArH), 3.71(3H, s, OCH₃), and 3.53(3H, s, OCH₃); m/z 360 (M⁺, 6), 329(100), 312(11), 253(7), 121(11), and 91(8).

20 : mp 116-117°C (ethanol), υ_{max} (CHCl₃) 1622 cm⁻¹ ; λ_{max} (CHCl₃) 246(16 966) and 340(20 065) nm(ε); δ (CDCl₃ - 270 MHz) 12.76(1H, s, sh. ex-D₂O, OH), 7.77 - 7.18(18H, m, ArH), 6.48(1H, s, H-1), and 5.30(2H, s, O-CH₂Ph); m/z 406 (M⁺, 19), 329(100), 180(8), 91(71).

Received, 23rd March, 1988