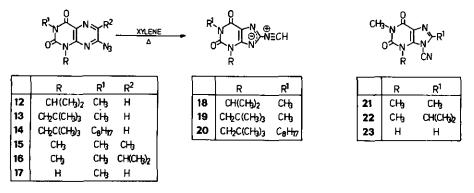
SYNTHESIS AND PROPERTIES OF UNUSUALLY STABLE, HETEROCYCLIC NITRILIUM-YLIDES

Wolfgang Pfleiderer Fakultät für Chemie, Universität Konstanz Postfach 5560, D-7750 Konstanz/West Germany

Sir Derek Barton dedicated to his 70th birthday and in admiration of his many important contributions to chemistry.

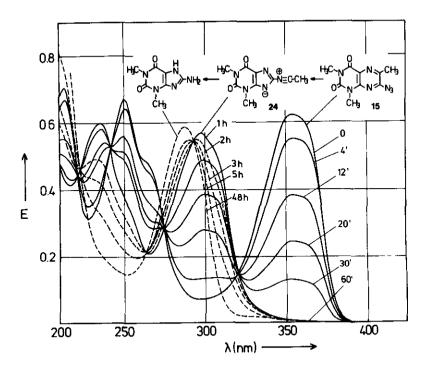
<u>Abstract</u> - 7-Azido-1,3-disubstituted lumazines show at elevated temperatures two new ring contractions leading to 9-cyanoxanthines and a new type of stable purin-8-yl nitrilium ylides. This high stability is due to a strong resonance stabilization of the negatively charged purinyl anion moiety, which does not even afford a bulky substituent at the nitrilium C-atom to counteract secondary reactions. The structures of the new nitrilium ylides have been proven by spectral means and comparisons with model substances.

The chemistry of nitrilium ylides 1 is under investigation for more than 25 years and revealed numerous syntheses, which generate this reactive function under a variety of conditions $^{2-5}$. It is generally agreed that only in special cases a stable isolable nitrilium ylide can be expected due to the high reactivity of this functionality in 1,3-dipolar cycloaddition reactions and towards nucleophiles. Only recently the synthesis of the first stable nitrilium ylide could be achieved by the photolysis of diazotetrakis(trifluoromethyl)cyclopentadiene in presence of 1-adamantyl nitrile to form 1-adamantyl nitrilium N-tetrakis(trifluoromethyl)cyclopentadienylide 6 , which was crystallized and its structure proven unequivocally by X-ray structure determination 7 . This result is not unexpected in view of the anion stabilizing ability of the tetrakis(trifluoromethyl)cyclopentadienylide moiety as well as the steric bulk of the adamantyl residue. The first example of a thermally generated nitrilium ylide is derived from 5-tert.-butyl-3,3-bis(trifluoromethyl)-2,3-dihydro-1,4, λ^5 -oxazaphosphol by vacuum flash pyrolysis at $400^\circ/10^{-3}$ Torr and matrix isolation at $-196^\circ C^8$.


Our interest in nitrilium ylides arose more or less accidentally during studies of various relatively unstable 7-azidolumazine derivatives. We noticed that 7-azido-

1,3-dimethyllumazine ($\frac{1}{2}$) converts on drying at 100°C in the oven in a solid state reaction without change of its habitus into a new product, which was identified as 9-cyano-1,3-dimethylxanthine ($\frac{5}{2}$). We assume that this new pteridine \rightarrow purine ring-contraction proceeds either via the intermediary nitrene $\frac{2}{2}$ or directly in a zwittazido cleavage $\frac{9}{2}$, to the intermediates $\frac{3}{2}$ and $\frac{4}{2}$ respectively, which cyclize directly to 9-cyano-1,3-dimethylxanthine ($\frac{5}{2}$) or via the 8-cyano isomer $\frac{6}{2}$ followed by a 1,5-sigmatropic shift of the functional group.

There are already some precedences in literature of analogous ring contractions of 2-azidopyrazines into N-cyanoimidazoles 11,12 .


In a second experiment we heated $\underline{1}$ in xylene and obtained a relatively insoluble material isomeric with $\underline{5}$ according to elemental analysis and the distinct differences of their uv and ir spectra. Treatment of this product in H_2O or n-BuOH led to 8-aminotheophylline indicating that another pyrazine ring contraction has taken place on heating of $\underline{1}$ in an aprotic solvent. From the nmr spectrum in D_6 -DMSO can be concluded that the structure of theophyllin-8-yl isocyanide ($\underline{7}$) has to be excluded as a sensible possibility due to the presence of a singlet at 8.58 ppm, which is rather a C-H than a N-H signal from its stability in a D_2O exchange experiment. Since heterocyclic azides $^{13-17}$ show a broad variety of reactions the structures of a cyclic carbodiimide ($\underline{8}$), a condensed 1,3-diazeto[1,2-f]purine derivative ($\underline{9}$), a spiro-compound ($\underline{10}$) or a resonance stabilized nitrilium ylide ($\underline{11}$) cannot a priori be eliminated.

It is obvious that the solution of the difficult structural problem will arise from spectral data and comparisons with model substances. From the ir spectrum, which exhibits a characteristic band at 2180 cm $^{-1}$ we can conclude that the cyclic carbodiimid \S , the tricyclic ring system \S , and the spiro-structure \S respectively are very much unlikely, whereas the existence of a stable nitrilium ylide (\S is in favour. The uv spectrum in methanol shows two strong bands at 234 and 295 nm and a shoulder at 250 nm, which resembles best with 8-ethinyltheophylline as the closest structural analog (Table). Very similar spectral features are also found for the reaction products derived from 7-azido-1-isopropyl-3-methyllumazine (\S and its 1-neopentyl- (\S and 1-neopentyl-3-n-octyl analog (\S in a similar manner and leading to better soluble nitrilium ylides (\S \S \S \S \S \S). The presence of an additional alkyl substituent in 6-position (\S \S \S \S or the removal of the N-1 substituent (\S does not favour the nitrilium ylide formation but leads to the 9-cyano-xanthines \S 1-23.

In the case of 7-azido-1,3,6-trimethyllumazine ($\frac{1}{2}$) the formation of the corresponding nitrilium ylide ($\frac{2}{4}$) could only be detected on photolysis in methanol as

an intermediate which is further hydrolysed to give 8-aminotheophylline.

More information was finally obtained from 13 C-nmr spectra, which are in excellent agreement with the proposed stable nitrilium ylide structures 11, 18-20.

It was found with the well-soluble nitrilium ylide $\frac{20}{2}$ in a gated decoupling experiment in CDCl₃ a 1 H- 13 C coupling of 246 Hz at 145.5 ppm, which is due to the nitrilium moiety of the molecule proving directly this unusual structure. There was also observed another long-range coupling of 10 Hz of the signal at 109.5 ppm, which has to be assigned logically to the C-8 atom. Comparing the 13 C-nmr spectra of the purinium-betaine structures with those of the other xanthine derivatives (table) it is obvious that the different electron distributions in both systems show similarities only at C-6, C-2 and C-4, whereas in the zwitter-ion molecules the chemical shifts of C-5 are moved down-field to some extent and C-8 is altered tremendously up-field indicating a relatively high electron density at this center.

Regarding the mechanism of formation of the nitrilium ylides we assume first cleavage to the intermediate $\frac{1}{3}$, which shows an electrocyclization to $\frac{8}{2}$ followed by a valence tautomerism to $\frac{9}{2}$ and finally ring opening to $\frac{11}{2}$.

	lly Spect	ra IN MeOH	Ir	¹³ C-Nmr Spectra IN DMSO-d ₆					
	λ _{MAX}	lg E		•					
CH3N H	270	4.02		1540	150 9	147 5	139 9	106 1	
CH3N IN	[230] 283	[3.85] 3.84	2258	152.7	150.7	147.3	146.0	103.0	105 8
CH _{3N} N O N N CH ₃ CN	245 [260]	4 00 [3.94]	2260	155.7	149 9	137. 2	140.0	103.0	114.6
CHANGE HOCK	218 296	4.38 4.12	2220	154 0	150 6	146 5	121.1	110.3	111.4
OYN H OYN H CH3N CECH	222 (246) 294	4.40 (3.63) 4.25	2140	1537	150 9	147 0	131 8	107 2	84 0 73.5
CH3N N SCH	234[250] 295	4 22 [3 95] 4.21	2180	156.9	1540	148 5	109 4	114 4	146 5
CH3N I S NECH O N N NECH HHC-CHCH3	237 [250] 296	4.19 [3.97] 4.19	2200	156 9	154.9	147 8	109 4	114 2	1466
CH307 N ® CH2C(CH3)3	237 (250) <i>29</i> 7	4.19 [3.98] 4.19	2190	157 6	1 54.1	149.1	1095	114 3	146 8
HyrCoN N M O N N NECH O CHEC(CHE)3	238(250) 297	4 22 [3 98] 4 25	2180	157 7	152 7	148 8	110 1	114 5	145 5

The unusual high thermodynamical stability of the new type of heterocyclic nitrilium ylides is due to a strong resonance stabilization of the negatively charged anion moiety of the molecule. We have isolated with this type of compounds the first case of a stable nitrilium ylide, which does not afford a further bulky substituent at the nitrilium ylide C-atom to counteract secondary reactions.

REFERENCES

- 1. R. Huisgen, Angew. Chem., Int. Ed. Engl., 1963, 2, 565.
- 2. A. Padwa and P.H.J. Carlson in "Reactive Intermediates", Ed. R.A. Abramovitch, Plenum Press, New York, 1982.
- 3. A. Padwa, Accounts Chem.Res., 1976, 9, 371.
- 4. P. Gilgen, H. Heimgartner, H. Schmid, and H.J. Hansen, Heterocycles, 1977, 6, 143.
- 5. R. Huisgen, Med. Sviluppi Sin. Org., Corso Estivo Chim., 1967, 10, 259.
- 6. E.P. Janulis Jr. and A.J. Arduengo III, J.Am.Chem.Soc., 1983, 105, 3563.
- 7. E.P. Janulis Jr., S.R. Wilson, and A.J. Arduengo III, Tetrahedron Lett., 1984, 25, 405.
- 8. C. Wentrup, S. Fischer, H.M. Berstermann, M. Kuzajî, H. Luerssen, and K. Burger, Angew.Chem., 1986, 98, 99.
- 9. H.W. Moore, Accounts Chem.Res., 1979, 12, 125.
- B.A. Belinka Jr., A. Hassner, and J.M. Hendler, <u>J.Org.Chem.</u>, 1981, <u>46</u>, 631.
- 11. O. Ohta, T. Watanabe, J. Nishiyama, K. Uehara, and R. Hirate, Heterocycles, 1980, 14, 1963.
- 12. T. Watanabe, J. Nishiyama, R. Hirate, K. Uehara, M. Inoue, K. Matsumoto, and A. Ohta, <u>J</u>. Heterocycl. Chem., 1983, <u>20</u>, 1277.
- 13. J.P. Dirlam, B.W. Cue, and K.J. Combatz, J.Org.Chem., 1978, 43, 76.
- C. Wentrup, C. Thetaz, E. Tagliaferri, H.J. Lindner, B. Kitschke, H.W. Winter, and H.P. Reisenauer, Angew. Chem., 1980, 92, 556.
- 15. C. Wentrup, Advanc. Heterocycl. Chem., 1981, 28, 231.
- 16. Y. Ohba, I. Matsukura, T. Nishiwaki, and Y. Fukazawa, Heterocycles, 1985, 23, 287.
- 17. L. Giammanco and F.P. Invidiata, Heterocycles, 1985, 23, 1459.
- 18. A. Rybar and W. Pfleiderer, Collect.Czech.Chem.Commun., 1987, 52, 2730.

Received, 5th September, 1988