TWO STEP REDOX SYSTEMS LII: 2,2'-BIPYRIDYLBORONIUM SALTS

Siegfried Hünig* and Ingeborg Wehner 2

Institut für Organische Chemie der Universität

Am Hubland, D-8700 Würzburg, FRG

rings.

<u>Abstract</u>-Dications <u>1</u> derived from 2,2-bipyridine are found to exist as fully reversible two step redox systems with persistent radical ions (SEM) of high thermodynamic stability, if the bridge X forces the two pyridine rings into coplanar positions. The well known derivative <u>1a</u> (Diquat^R) is now complemented by the boronium ions <u>1c</u> and <u>1e</u> -<u>1g</u>, as shown by voltammetry and the uv spectra of the corresponding radicals.

The redox properties of 2,2'-bipyridinium salts in aqueous solution has been thoroughly investigated in connection with their herbicide effects.² Although under these conditions reversibility is observed only for the first electron transfer (OX/SEM), reduction of <u>la</u> already at -0.57 V (vs. Ag/ AgCl) compared to -0.83 V for <u>1b</u> and -0.88 V for <u>2</u> was connected to different geometries³: In <u>la</u> the two methylene groups force the bipyridine moiety into coplanar positions whereas the larger bridge in <u>1b</u> and even more so the two methyl groups in <u>2</u> create rather distorted systems. Therefore only in <u>la</u>-SEM the single electron can be distributed smoothly over the π -systems of both pyridine

In DMF these bipyridinium salts ("Weitz-type"⁴) behave as perfectly reversible two step redox systems, which can be characterized e.g. by the thermodynamic stability of the cation radical (SEM) given as the semiquinone formation constant K_{SEM} for the equilibrium OX + RED \rightleftharpoons 2 SEM.⁴ Indeed K_{SEM} reflects the differences in planarity quite strongly, as can be judged from K_{SEM} 's (DMF) 4.10⁷ (<u>la</u>), 3.10⁵ (<u>lb</u>) and ~20 (<u>2</u>).^{4,5}

We therefore looked for other bridges X in <u>1</u> which will provide a planar π -system. Complexing hetero atoms, especially boron, seemed to be most promising. By this reasoning <u>lc</u> - <u>lg</u> were prepared and their redox properties were studied by voltammetric uv/vis spectroscopy.

RESULTS AND DISCUSSION

Boronium ions <u>lc</u> - <u>lf</u> have been already described in the literatures, ^{15,16} although not always fully characterized and partly with different anions. <u>lg</u> can easily be obtained from bipyridine (<u>3</u>) and 9-BBN chloride (4).

<u>lg</u>-Cl precipitates from toluene after a slightly exothermic reaction. From its aqueous solution <u>lg</u>-PF₆ is isolated in 81 % yield after addition of NH_4PF_6 .

Since all salts $\underline{1c} - \underline{1g}$ contain o-substituted pyridine rings, a C-H out of plane vibration⁶ is observed at 770 - 730 cm⁻¹.

¹¹B-Nmr resonances are strongly shifted upfield on raising the coordination number from 3 to 4.⁷ E.g. the signal of $\underline{4}$ ($\delta = 82.0 \text{ ppm}$, CDCl_3)⁸ is shifted in $\underline{18}$ to $\delta = 8.9 \text{ ppm}$ ($\underline{10}_6$)-DMSO). The uv-spectra of $\underline{1c} - \underline{1g}$ (λ_{max} 302 - 322 nm, MeCN) are rather similar to that of $\underline{1a}$ (λ_{max} 310 nm, MeCN)⁹ with the exception of $\underline{1e}$ -PF₆. This salt shows an intense yellow color in the solid state and its slightly yellow solutions are due to a strong band at 371 nm ($\log \epsilon = 4.29$, MeCN). Solutions of $\underline{1a} - \underline{1g}$ or $\underline{3}$ in dry DFM turn red to violet by formation of radicals (SEM) on addition of sodium. By the same procedure $\underline{1d}$, however, decomposes as it does by electrochemical reduction. As can be judged from Table 1 absorption maxima of the radicals derived from $\underline{1c}$ and $\underline{1e} - \underline{1g}$ display the same absorption bands as that of the radical ion of $\underline{1a}^{10}$ containing a bismethylene bridge.

In addition to these, <u>lc</u> and <u>le</u> radicals, carrying the electron attracting oxygen and fluoride ligands, show additional bands at 422/423 nm. On the other hand, aromatic or alicyclic ligands as in <u>lf</u> and <u>lg</u> cause additional absorptions at 490 nm and 494 nm, respectively.

Like <u>la</u> the boronium salts (<u>lc</u> - <u>lf</u>) behave as perfectly reversible two step redox systems in DMF. As an example the CV, AC and DC curves of <u>lg</u> are given in Fig. 1.

Figure 1. CV (left), DC and AC (right) plots for the boronium salt 1g.

Table 1. Redox potentials E_1 (RED/SEM), E_2 (SEM/OX) and semiquinone formation constants K_{SEM} for <u>1a</u>, <u>1c</u> and <u>1e</u> - <u>1g</u>^a together with absorption maxima and molar extinction coefficients for the corresponding radicals (SEM)^b.

	<u>la</u>	<u>1c</u>	<u>le</u>	<u>lf</u>	<u>1g</u>
$E_1 (mV)^a$	-0.74 ¹¹	-1.20	- 1.16	-1.54	-1,62
E ₂ (mV) ^a	-0.26^{11}	-0.62	-0.62	-0.86	-0.94
^K SEM λ _{max} (nm) ^b (log ε) SEM	1.4.10 ⁸	7.1.10 ⁹	1.7 •10 ⁹	3.0.10 ¹¹	3.0.10 ¹¹
	377 (4.48) ¹¹	379 (4.33)	381 (4.67)	377 (3.99)	378 (4.64)
	4	422 (4.11)	423 (4.50)		
	460 (3.95) ¹¹	460 (4.02)	458 (4.41)	463 (3.78)	463 (4.14)
				490 (3.76)	494 (4.31)

a) Potentials vers. Ag/AgCl in MeCN, solvent DFM + n-BuN $_4^+$ BF $_4^-$ in the presence of neutral Al $_2$ O $_3$.¹² Potentials derived from CV, DC and AC are identical within ±10 mV. b) 10 ml of the substrate (10⁻³ to 10⁻⁴ molar) dissolved in dry DMF were treated under N $_2$ with pieces of sodium in a reaction vessel connected to uv-cell. Uv spectra were recorded when maximal concentration of SEM was reached after 1-2 hours. ε presents minimum value mainly for comparison of different absorption bands in one compound.

One should consider that in contrast to <u>la</u> the boronium salts <u>lc</u> - <u>lf</u> (OX) carry one positive charge only. Therefore reduction to SEM produces apparently neutral radicals with zwitterionic character. The reduced form RED consequently exists as a mono anion. This difference to the dication <u>la</u> probably is responsible for shifting E_1 of the boronium salts to more negative potentials (cf. Table 1). According to high electronegativity of fluoride this shift amounts to only 0.52 V for <u>lc</u> whereas with alicyclic ligands (<u>lg</u>) already 0.66 V are recorded. The effects of the other ligands arrange <u>le</u> and lf in the expected order.¹³

 K_{SEM} 's of <u>lc</u> and <u>le</u> - <u>lg</u> are even larger than that of <u>la</u>, increasing with more negative potentials E_2 as it has been observed as a general rule for Weitz-type redox systems.^{4b,11}

CONCLUSIONS

Planar two step redox systems derived from 2,2-bipyridine and including persistent radicals (SEM) of very high thermodynamic stability are not restricted to the dicationic \underline{la} (Diquat^R) but are also obtained from monocationic boronium salts \underline{lc} and $\underline{le} - \underline{lg}$. They may well serve as electron transfer catalysts if potentials more negative than those of \underline{la} by 0.4 - 0.9 V are appropriate.

EXPERIMENTAL

<u>Apparatus</u>. Melting points (corrected): Kofler-microscope. Ir: Perkin-Elmer 157 G. Uv: Cary 17,~10⁻⁴ molar solution, 0.1 cm cell. ¹H-Nmr.: Varian T 60 (60 MHz), EM 360 (60 MHz). ¹³C- and ¹¹B-Nmr: Bruker WH 90 (22.63 MHz), standardized (¹¹B) against BF₃·Et₂O extern. Voltammetry: PAR 170 with i.r. compensation, standardized against bis-diphenylchromium iodide.¹⁴

2,2'-Bipyridyldifluoroboronium hexafluorophosphate (1c*PF₆). White crystals¹⁵, mp 180°C, 61 % yield.

<u>2,2'-Bipyridyldichloroboronium hexafluorophosphate</u> (<u>1d</u>*PF₆). White crystals¹⁵, mp 254^oC, 68 % yield.

2.2'-Bipyridy1-1,2.3 benzodioxaboronium hexafluorophosphate (1e·PF₆). Procedure according to 1.c.¹⁶, however dichloromethane as solvent instead of benzene. Formation of the PF₆ salt by addition of 1e·C1 in water to an aqueous solution of NH₄PF₆ (general procedure). Intense yellow crystals, mp 186°C, 74 % yield.

<u>2,2'-Bipyridyldiphenylboronium bromide</u> (<u>1f</u>*Br). Procedure as given for diphenylchloroborane¹⁶, however solvent THF instead of benzene, mp 327⁰C (dec.), 85 % yield.

2.2⁻Bipyridy1(9-boroniumbicyclo{3.3.1}nonane) hexafluorophosphate (1g). 2.19 g (14.1 mmo1) of freshly sublimed dry 2.2⁻bipyridine (<u>3</u>) in 20 ml of toluene was slowly added to 2.20 g (14.1 mmo1) of 9-BBN-C1⁸ in 20 ml of warm water. This solution was added to 2.50 g (15.3 mmol) NH₄PF₆ in 10 ml water; 4.80 g (81 %) white crystals, mp 252°C. Ir (KBr): 3160, 3100, 1960, 1920 (C-H), 1620, 1560, 1460, (arC=C), 1310, 1240, 1160, 1060, 1055 (B-N), 910, 880, 820, 755, 710 cm⁻¹ (arC-H). lw (CH₃CN): λ_{max} (log ε) = 239 (4.38), 301 (4.35), 310 (4.32) nm. - ¹H-Nmr ({D₆})-DMSO): δ = 0.77 (m; 2H, bridgehead H of 9-BBN), 2.03 (m; 12H, CH₂ groups of 9-BBN), 8.15 (m; 2H, β-bipy-H), 8.80 (t, <u>J</u> = 7.5 Hz; 2H, γ-bipy-H), 9.22 (d, <u>J</u> = 8 Hz, β'-bipy-H), 9.49 (d, <u>J</u> = 5 Hz, 2H, α-bipy-H). -¹¹B-Nmr ({D₆})-DMSO): δ = 8.9 ±1 (b).- Anal. calcd for C₁₈H₂₂BF₆N₂P (421.7): C, 52.12; H, 5.22; N, 6.64. Found: C, 51.37; H, 5.18; N, 6.48.

ACKNOWLEDGEMENTS

We greatfully acknowledge financial support by Stiftung Volkswagenwerk, Fonds der Chemischen Industrie and BASF AG, Ludwigshafen (Rhein) as well as a gift of diphenylbromborane by Prof. Dr. H. Nöth, University of Munich.

REFERENCES AND NOTES

1 Paper XLIX: S. Hunig and W. Freund, Helv. Chim. Acta, 1987, 70, 929.

- 2 Taken from the PhD Thesis, Würzburg 1986.
- 3 L.A. Summers, "The Bipyridinium Herbicides", Academic Press, London, 1980.

- 4 c.f. reviews: a) S. Hünig and K. Deuchert, <u>Angew. Chem.</u>, 1978, <u>90</u>, 927; <u>Angew. Chem. Int. Ed.</u>
 <u>Engl.</u>, 1978, <u>17</u>, 875; b) S. Hünig and H. Berneth, <u>Topics in Current Chemistry</u>, 1980, <u>92</u>, 1.
- 5 S. Hünig, J. Groß, and W. Schenk, Liebigs Ann. Chem., 1973, 324.
- 6 E. Pretsch, T. Clerc, J. Seibl, and W. Simon, "Tabellen zur Strukturaufklärung Organischer Verbindungen," 2nd ed., I 55, Springer Verlag, Berlin, 1981.
- 7 R. Köster in "Methoden der Organischen Chemie" (Houben-Weyl-Müller), 4th ed., vol. 13/3c, p.397, Thieme Verlag, Stuttgart, 1984.
- 8 H.C. Brown and G.W. Kramer, J. Organomet. Chem., 1974, 73, 1.
- 9 R.F. Homer and T.E. Tomlinson, J. Chem. Soc., 1960, 2498.
- 10 E. Steckhan and T. Kuwana, Ber. Bunsenges. Phys. Chem., 1974, 78, 253.
- 11 M. Horner, S. Hünig, and H. Pütter, Electrochim, Acta, 1982, 27, 205.
- 12 O. Hammerich and V.D. Parker, Electrochim. Acta, 1973, 18, 5.
- 13 M. Graßberger, "Organische Borverbindungen", p.4., Verlag Chemie, Weinheim, 1971. M.F. Lappert in E.L. Mutterties "The Chemistry of Boron and its Compounds", John Wiley and Sons Inc., New York, London, Sydney, 1967.
- a) V. Gutmann and R. Schmid, <u>Monatsh. Chem.</u>, 1969, <u>100</u>, 2113; b) V. Gutmann and G.P. Helbig, <u>Monatsh. Chem.</u>, 1969, <u>100</u>, 1432; c) E.O. Fischer and D. Seus, <u>Chem. Ber.</u>, 1956, <u>89</u>, 1809.
- 15 D.D. Axtell, A.C. Campbell, P.C. Keller, and J.V. Rund, <u>J. Coord. Chem.</u>, 1976, <u>5</u>, 129.
- 16 L. Banford and G.E. Coates, <u>J. Chem. Soc.</u>, 1964, 3564.

Received, 2nd August, 1988