BAYTOPINE, A NEW HOMOAPORPHINE ALKALOID ≠ Aleš Husek^a, Nurhayat Sütlüpinar^b, Petr Sedmera^c, and Vilím Šimánek^{a+} - a. Institute of Medical Chemistry, Palacký University, 775 15 Olomouc, Czechoslovakia - b. Department of Pharmacognosy, University of Istanbul,34452 Istanbul, Turkey - c. Institute of Microbiology, Czechoslovak Academy of Sciences, 142 20 Prague, Czechoslovakia Abstract — Baytopine ($\underline{2}$), a new alkaloid, was isolated from leaves and flowers of <u>Merendera kurdica</u> Bornm. and its structure was determined by spectroscopic means. All eight presently known natural homoaporphine alkaloids were found in plants of the Liliaceae family¹. This communication describes the structure of baytopine, a new homoaporphine alkaloid isolated during our recent phytochemical study of several <u>Merendera</u> species². Baytopine, an optically active compound ($[\mathcal{L}]_0$ +74 0 (c 0.28, CHCl $_3$)), amorphous solid, was isolated from leaves and flowers of M. kurdica Bornm. The gave a positive FeCl $_3$ test for phenols. Its uv spectrum, which is characteristic of a homoaporphine type alkaloid 4 , is pH-dependent and similar to that of bechuantine (7§-(+)-floramultine) (1) 5 (Table 1). The ir spectrum of baytopine showed the presence of hydroxyl functionality (bands at 3400-3500 cm $^{-1}$). Mass measurements (M $^+$ m/z 371) established the molecular formula C $_21$ H $_25$ NO $_5$. The base peak (m/z 354) in the mass spectrum (70 eV) of baytopine corresponds to M $^+$ -17 which indicates, by analogy with other homoaporphines, that position C-1 or C-13 carries $[\]neq$ Dedicated to Professor Derek Barton on the occasion of his 70th birthday. a phenolic hydroxy group 6,7 . According to its 1 H-nmr spectrum, baytopine contains the same building blocks as bechuanine (1): 3 methoxyls, one N-methyl, 2 isolated aromatic protons, one ArCH₂CH₂N system, and one NCHCH₂CH₂ system. The presence of two phenolic hydroxyls is inferred from the difference between the total number of hydrogen atoms in the molecule (ms) and the number of protons attached to carbons (13 C-nmr). However, the nonidentical 1 H and 13 C-nmr spectra (Table 2) indicate that the two compounds are positional isomers. Only one methoxyl (3.92 ppm) exhibits a NOE (12%), to the 6.68 ppm singlet. Since the latter signal is assigned to H-3 on the basis of its long-range coupling to the proton at 3.15 ppm which forms part of the AA´BB´system of the $\mathrm{CH}_2\mathrm{CH}_2$ group, one methoxyl is located at C-2. Because of the single NOE between the methoxyl and aromatic proton, the second methoxyl cannot be placed at C-11. With both bechuanine and baytopine, one methoxyl resonates in higher field - an effect typical for methoxyl at C-1 or C-13 (ref. 8). That requires a reversed substitution pattern (DH at C-13, OCH₃ at C-1) in baytopine, leading to the formula $\underline{2}$. Both alkaloids exhibit a negative Cotton effect at ${}^{1}L_{a}$ transition (Table 1). Thus the $7(\underline{\mathtt{S}})$ absolute configuration for baytopine $(\underline{\mathtt{2}})$ is directly assignable from CD spectrum⁹. Table 1. Spectral data of bechuanine (1) and baytopine (2). | Alkaloid | | Uv $\lambda_{ extsf{max}}$ nm (log $oldsymbol{arepsilon}$) | CD | | | |----------|---|---|---|--|--| | 1 | A | 216 (4.61), 258 (4.05), 285sh (3.72), | 200 (14.90), 257 (-19.20) | | | | <u>+</u> | В | 210 (4.58), 288 (4.16) | 229 (15.75), 290 (-10.30), 305 (-10.80) | | | | | Α | 215 (4.55), 257 (4.02), 287sh (3.67), | 209 (20.09), 258 (-11.20) | | | | 2 | | 296sh (3.62) | | | | | | В | 217 (4.39), 287 (4.00), 296sh (3.97) | 222 (8.00), 279 (-6.25), 298 (-5.54) | | | A - in EtOH, B - in 0.001 M EtONa Table 2. 1 H (400 MHz) and 13 C (100 MHz) nmr data of bechuanine ($\underline{1}$) and baytopine ($\underline{2}$) (σ ppm, J= Hz). | Proton | (<u>1</u>) | (<u>2</u>) | Carbon | (<u>1</u>) | (<u>2</u>) | |---------------------|--------------|--------------|---------------------|----------------------|----------------------| | H~3 | 6.66 s | 6.68 s | C-1a | 119.8 s | 135.6 s ^a | | H~4a | 3.02 m | 3.15 m | C-1 | 140.7 s ^a | 149.8 s ^b | | H~4b | 3.14 m | 3.35 m | C-2 | 149.5 s ^b | 149.7 s ^b | | H-5a | 2.63 m | 2.83 m | C-3 | 110.7 d | 110.6 d | | H~5b | 2.79 m | 3.11 m | C-3a | 121.8 s ^C | 124.2 s ^a | | H~ 7 | 3.34 dd | 3.63 dd | C-4 | 30.5 t | 30.0 t | | | J=11.1, 6.8 | J=11.7, 6.3 | C-5 | 45.0 t | 44.8 t | | H~8a | 2.00 m | 2.07 m | C - 7 | 57.9 d | 58.6 d | | H-8b | 2.24 m | 2.39 m | C-7a | 127.6 s ^C | 122.4 s ^a | | H~9a | 2.11 m | 2.26 m | C – B | 25.9 t | 24.6 t | | H-9b | 2.42 m | 2.48 m | C-9 | 33.2 t | 33.7 t | | H-10 | 6.64 s | 6.65 s | C-9a | 124.5 s ^C | 121.8 s ^a | | 1-0CH3 | - | 3.64 s | C-10 | 110.8 d | 111.0 d | | 2-0CH ₃ | 3.90 s | 3.92 s | C-11 | 138.2 s ^a | 141.3 s ^C | | 12-0CH ₃ | 3.95 s | 3.95 s | C-12 | 149.1 s ^b | 147.6 s ^b | | 13-OCH ₃ | 3.59 s | - | C-13 | 146.8 s ^b | 138.6 s ^C | | N-СН ₃ | 2.40 s | 2.59 s | C-13a | 136.8 s ^C | 118.9 s | | | | | 1-0CH ₃ | - | 61.2 q ^d | | | | | 2-0CH ₃ | 55.9 q | 55.1 q | | | | | 12-0CH ₃ | 61.2 q ^d | 61.2 q ^d | | | | | 13-0CH ₃ | 61.1 q ^d | - | | | | | N-CH ₃ | 41.8 q | 40.8 q | a-d Assignments may be reversed ## ACKNOWLEDGEMENT We thank Professor T. Baytop, Faculty of Pharmacy of Istanbul University, for collection and botanical classification of the plant material. $$1: R^1 = H \cdot R^2 = CH_3$$ $2: R^1 = CH_3 \cdot R^2 = H$ ## REFERENCES - 1. F. Šantavý, <u>Heterocycles</u>, 1981, <u>15</u>, 1505. - A. Husek, N. Sutlüpinar, H. Potěšilová, S. Dvořáčková, V. Hanuš, P. Sedmera, P. Maloň, and V. Šimánek, <u>Phytochemis</u>try, in press. - 3. We isolated 17.5 mg of baytopine (2) from leaves (230 g of dry material) and 1.8 mg from flowers (20 g of dry material) of M. <u>kurdica</u> Bornm. Plant material was collected in June 21, 1981 in Van-Bahçesaray (Turkey) by Asuman and Turhan Baytop, University of Istanbul. - 4. F. Šantavý, S. Dvořáčková, V. Šimánek, and H. Potěšilová, <u>Acta Univ. Palacki.</u> <u>Olomuc. (Olomouc), Fac. Med.</u>, 1983, <u>105</u>, 63. - 5. F. Šantavý and L. Hruban, Coll. Czech. Chem. Commun., 1973, 38, 1712. - 6. Ms (m/z, rel. intensity, %) 371 (M⁺, 53), 354 ($C_{21}H_{24}NO_4$, 100), 340 ($C_{20}H_{22}NO_4$, 97), 60 ($C_2H_4O_2$, 17), 58 (C_3H_8N , 8). - 7. A.R. Battersby, R. Ramage, A.F. Cameron, C. Hannaway, and F. Šantavý, <u>J. Chem. Soc. (C)</u>, 1971, 3514. - 8. T. Kametani, F. Satoh, H. Yagi, and K. Fukumoto, J. Drg. Chem., 1968, 33, 690. - 9. A. Brossi, J. O'Brien, and S. Teitel, <u>Helv. Chim. Acta</u>, 1969, <u>52</u>, 680. Received, 2nd August, 1988