HETEROCYCLIC POLYETHERS DERIVED FROM D-SORBITOL AND D-MANNITOL AS HOSTS FOR CHIRAL AMMONILIM SALTS

Elizabeth A.El'perina, Edward P.Serebryakow* and Marina I.Struchkova Institute of Organic Chemistry of the USSR Academy of Sciences, 117913 Moscow, the USSR

Abstract - Coronands **(2)** and **(2)** derived from D-sorbitol display but poor or no recognition towards **(R)-** or (S)-d-phenyletlyrlammonim hexafluorophosphates (PEA.HPF₆) but selectively extract (R)- and (S)-enantiomers, respectively, of thek-phenylglycine methyl ester salt. All novel derivatives of D-mannitol $(6,7a-e)$ show no chiral recognition towards PEA.HPF₆ or PEA.HClO₄, the complexing ability of podands 7a-e varying with the nature of side chains.

D-Mannitol and L-iditol are known to be suitable starting materials for the synthesis of homotopic chiral coronands^{1,2}. Recently we obtained homotopic coronands from the most available hexitol, D-sorbitol³, as well as novel coronands and podands based on D-mannitol 4,5 . Here we report about the complexing properties of some of these compounds in respect to chiral cations derived from d-phenylethylamine (PEA) and \sim -amino esters. An improved procedure to prepare (3a-b) is also included.

1,3:2,4-Di-0-ethylidene- and **1,3:2,4-di-0-benzylidene-D-sorbitols (2,b)** or **1,4:3,6-dianhydro-D-mannitol(Z),** available from the parent hexitolsinone step, produce in fair yields 18 -crown-6 ethers possessing C_2 symmetry when condensed with TSOCH₂CH₂OCH₂CH₂OTS (DEGDT) or TsO(CH₂CH₂O) for (TEGDT), respectively, in superbase system MOH/DMSO (M=K or Na). In principle, from diols 1a, b both homo-

topic 2R, 12R-disubstituted coronands ($3a, b$) and their heterotopic 2R, 11R-disubstituted positional isomers ($4a, b$) could be obtained under these conditions. How**ever, different reactivity of the 6-OH and 5-OH groups in** la.2 **allows to secure preferential formation of 2 and 2 by means of temperature-controlled two-steps one-pot 0-alkylation (see Experimental) in 43 and 36% yield, respectively, the only side products being the corresponding non-oomplexing 9-crown-3 ethere (2)** and (5b) isolated in 14 and 10% yield. Earlier, 3a and 3b were obtained in **lower yields by the regiooontrolled four-step synthesis. 3**

Similarly, in NaOH/DMSO system at 60°C diol 2 reacts with TEGDT to give coronand (6) or undergoes double 0-alkylation to give podands $(7a-c)$ and the intermediates for podands ($7d, e$) in much better yields than in the well-known Hakomori's system (NaH/DMSO)^{4,5}. Moreover, in KOH-DMSO system at 60°C the yield of the known coronand (8) from 1,2:5,6-di-0-isopropylidene-D-mannitol and DEGDT **6 rises to 36% as compared with 24% yield in Hakomori's system (cf.** 1. The complexing ability of coronand\$ 3a, b and 6 in respect to hexafluorophospha**tes of (+)-, (-)-, and (** \pm **)-PEA** $\left[(R) -$, (S)-, and (RS)- $9a$, of (-) and $(\pm) - d$ phenylglycine methyl ester $[(R)$ - and (RS) -10[]], and of (R) -, (S) -, or (RS) -ala**nine, (S)- or (RS)-phenylalanine, and (S)- or (RS)-leuoine methyl ester was** studied by means of the known⁷ extraction technique using $1_{\text{H-nmr}}$ spectroscopy^{8,9} for the determination of the extracting ability, $R_e = [$ **Host.** Guest] $_{CDCl_3}/$ [Host] CDCl₂, host-guest association constant, K_a, and free energy of complexa**tion, AG. mantiomer distribution constant (EDC) was also determined from the areas of signals belonging to (R)- and (5)- enantiomers of the guest in the l~-m spectra of host-guest complexes found in organic phase upon contacting** &,& **or** 6 **with aqueous solutions of raoemic salts. 18-Crown-6 ether and coronand 2 were used as reference oompounds. The reeults are shown in the Table 1.** The values of R_e for all coronands tested are close to unity and imply the formation of 1:1 complexes. As for chiral recognition, the ability of $\frac{3a}{16}$ to transfer selectively $(R)-9a$ into organic phase is much weaker than that of $\underline{8}$ $\left[(R) - 9a/(S) - 9a \right]$ being only 1.10 for $\frac{3a}{2}$ against 1.62 for $\frac{3}{2}$ while $\frac{3b}{2}$ does not distinguish between (R) - and (S) -9a at all. At the same time coronand $\underline{8}$, inspite of its D₂ symmetry, displays no chiral recognition towards (R)- or (S)-
<u>10</u> whereas coronand <u>3a</u> shows weak but reliable selectivity towards (R)-10 and coronand 3b is able to transfer preferably (S)-10 into organic phase. This re**versa1 of enantioselectivity seems incompatible with Cram's three-point bind-**

HETEROCYCLES, Vol. 28, No. 2, 1989

ing model and might be tentatively assigned to a kind of hydrophobic interaction of phenyl groups of the host **(2)** and the guest *(2)* in the complex. me total lack of enantioselectivity in the complexation of 6 with 2a and 10 might be due to the similarity of van der Waals volumes of -CH₂- and -0- groups in the heterocyclic nucleus of 6 (Δ V_{w} ~ 5cm³/mol).

The ssme explanation can account for total lack of chiral recognition in the case of association of podands **7e-e** with perchlorates of (+)-, (-)-, and **(2)-**

PEA $[(R)-2b, (S)-2b,$ and $(RS)-2b$ in spite of the fact that the formation of diastereomeric host-guest pairs is manifested by the double sets of signals in ¹H-nmr and ¹³C-nmr spectra of complexes of <u>7a</u>-e with (RS)-9b. The complexing ability of these podands depends on the nature of side chains. Por podands with ether or acetal groups it is low $(R_{\rm g}$ for $\underline{7a}$, $\underline{7b}$ and $\underline{7c}$ being 0.10, 0.16 and 0.19, respectively) while podands with 8-hydroxyquinoline residues, *2* and *2,* can bind up to two molecules of $9b$ (R_c being 1.7 and 2.0, respectively). The 1 H-nmr spectra of complexes formed by coronand $3a$ with hexafluorophosphates of (RS)-alanine, (RS)-phenylalanine and (RS)-leucine methyl esters display double sets of signals in comparison with the spectra of complexes formed from <u>2a</u> and individual (R)- or (S)-AlaOMe.HPF₆, (S)-PheOMe.HPF₆ and (S)-LeuOMe.HPF₆. However, in neither case any selectivity of complexation could be observed, the **(R):(S)** ratio remaining at 1.00 for each of the racemates. The closest analogues of coronands $2a,b$ by molecular symmetry (C₂) and the pattern of substitution are monoaza-crowns of types \underline{A} (X=0 or H₂) and \underline{B} , whose complexation with chiral ammonium salts had be studied by several methods^{10,11}, and diaza-crowns of type c^{12} . Among them compounds of group \underline{A} (particularly when $X=H_{2}$) display well-pronounced chiral recognition in respect to rather bulky **k-(1-naphtyl)ethylammonium** and 0-methyl- d-phenylalaninium ions, while comwhen $\bar{x} = H_2$) display well-pronounced chiral recognition in respect to rather bul-
ky d -(1-naphtyl)ethylammonium and 0-methyl- d -phenylalaninium ions, while com-
pounds of groups B and C are not able to distinguish nium salts. In aza-crowns of group **A** the ooplanarity of five contiguous links in the macrocycle, the presence of a strongly binding heteroatom in the pyridine nucleus, **and** the proximity of two chiral centres to this site all contribute to enhance the energy difference between diastereomeric host-guest complexes **(&A** Gm0.3-1.6 kcal/mol). Conformationally flexible coronands &, **2** display much lower enantioselectivity $(A \land G \leq 0.065$ kcal/mol), although - and this is worth noting - in respect to less bulkier substrates. The fact that $\frac{3a}{2}$ and 3b show some degree of chiral recognition towards 9a or 10 whereas their analogues of type **Q** do not might point to the role of bulky side groups of $2a, b$ in complexation.

EXPERIMENTAL

from 50° to 75°C. Yield 36%.

Molecular weight of novel coronands and podands was determined mass spectrometrically on a Varian MAT-44s instrument by independent use of EI (thermodesorbtion), CI(NH₃) and LSI technique (NaCl-H₂O-glycerol). ¹H-Nmr spectra were recorded in CDCl₃ at 20 \pm 2°C on Bruker WM-250 spectrometer.

(2R.lZR)-Di- (11S,2'R,6'S.9'R)-2'- **(4'.9'-dimethyl-3',51,8'.IOt-tetraoxabicyc**lo [4,4.0] decyll - **-1,4,7,10.13.16-hexaoxacyclooctadecane** (3a) : -

To a stirred auspension of 50 nun01 of freshly melted (under **Ar)** and ground to powder potassium hydroxide in 100 ml of dry DMSO 10 mmol of diol 2 was added and the stirring was continued for 1 h under Ar. Then 6 mmol of DEGDT in 50 ml of DMSO were gradually added at 20°C in span of 8 h and the stirring at this temperature was continued for 12 h. Then temperature was raised to 65°C and another portion of DEGDT (6 mmol) in 50 ml of DMSO was added, after which the mixture was kept stirring at 65°C for 48 h and finally poured into 600 ml of cold water. Extraction with chloroform (ll), washing of the extract with 100 ml of water and evaporation to dryness afforded a residue which was chromatographed on a column with 150 g of neutral alumina (activity grade II + 4% of water by weight). Elution with ether-chloroform (gradient $100:1 \rightarrow 10:1$) gave pure $3a$ as a clear viscous oil with $\left[\frac{1}{2}\right]_D^{20}$ - 9.4° (in CHCl₃); yield 43%. The best procedure to obtain its benzylidene analogue 3b (white amorphous solid with mp 218° and $\left[\frac{1}{2}\right]_0^{20}$ + 8.49°) differs from the procedure above in that it was carried out with NaOH in DMSO instead of KOH and the temperature ranges

Host	Guest	Guest's signals in H -nmr spectrum $(\delta, \text{ in } \text{ppm})^{\text{a}}$			$\mathbf{R}_{_{\mathbf{\Theta}}}$	$\mathbf{K}_{\mathbf{a}}$ (1/mol)	Δ G (kcal/mol)	EDC
		Me	α -CH	OMe				(R / S)
$18 - C - 6$	$(RS) - 9a$	1.650d	4.220q	$\overline{}$	0.97	4.00×10^{4}	6.2	
	$(RS) - 10$		4.730s	3.770s	0.99	12.30 \times 10 ⁴	6,8	
2e	$(RS)-9a$	1.650d(S)	4.395q(R, S)		0.93	1.60x10 ⁴	$5 - 6$	1.10(53:47)
		1.635d(R)						
	$(RS) - 10$		ъ	3.769s(R)	0.96	2.90x10 ⁴	6.0	1.09(52:48)
		-	b	3.787s(S)				
2 _b	$(RS) - 9a$	1.508d(S)	ъ		0.89	0.96 X10 ⁴	5.3	1.00(50:50)
		1.470d(R)	b					
	$(RS) - 10$		5.107s(S)			0.52x10 ⁴		
			5.087s(R)	3.740s(R, S)	0.82		5.0	0.82(45:55)
$\overline{6}$	$(RS) - 9a$	1.670d(S)	4.445q(5)		0.87	0.79x10 ⁴	5.2	1.00(50:50)
		1.661d(R)	4.435q(R)					
	$(RS) - 10$		5.032q(S)	3.810s(S)		0.45x10 ⁴	4.9	1.00(50:50)
			5.015q(R)	3.790s(R)	0,80			
$\overline{8}$	$(RS)-9a$	1.656a(S)	4.370q(R,S)		0.92	1.30x10 ⁴	5.6	1.62(62:38)
		1.552d(R)						
	$(RS) - 10$		4.922g(S)	3.780s(R)				
			4.907s(R)	3.800g(S)	0.82	0.52×10^{4}	5.0	1.00(50:50)

TABLE 1. Characteristics of complexation of coronands $3a$, $3b$ and 6 with hexafluorophosphates of d -phenylethylammonium $(9a)$ and d -phenylglycine methyl ester (10)

Assignments based on the spectra of complexes formed with (R) **- and** (S) **-** $9a$ **and** (R) **-** 10 **.** (8)

Overlap with host's signals. We will be a set of the se

REFERENCES

- **1.** J.F.Stoddart, Trogress in Macrocyclic Chemistry", Vol.2, ed. by R.M.Izatt and J.J.Christensen, Viiley-Interscience, New York, **1981, pp.173-250.**
- **2.** J.F.Stoddart. Chem.Soc.Rev., **1979,** 8, **85.**
- 3. E.P.Serebryakov, R.I.Abylgaziev, E.A.El'perina, and M.I.Struchkova, Izvest. Akad.Nauk SSSR, Ser.Khim., 1988, 112.
- 4. E.A.El'perina, R.I.Abylgaziev, M.I.Struchkova, and E.P.Serebryakov, Izvest. Akad. Nauk SSSR, Ser.Khim., **1988, 627.**
- 5. E.A.El'perina, R.I.Abylgaziev, and E.P.Serebryakov, Izvest.Akad.Nauk SSSR, Ser.Rbim., **1988, 632.**
- **6.** W.D.Curtis, D.A.Laidler, J.F.Stoddart, and G.H.Jones, J.Chem.Soc., Perkin **kad. Nauk SSSR, Ser.K**
E.A.El'perina, R.I.Aby
Ser.Khim., 1988, 632.
W.D.Curtis, D.A.Laidle:
<u>Prans</u>. **I**, 1977, 1756.
I.M.Timko, R.C.Helgeso:
- 7. J.M.Timk0, R.C.Helgeson, M.Newcomb, G.W.Gokel,snd D.Cram, J.Am.Chem.Soc., **1974, s, 7097.**
- **8.** E.P.Kyba, R.C.Helgeson, K.Madan, G.W.Goke1, T.L.Tarnowski, S.S.Moore,and D.J.Cram, J.Am.Chem.Soc., **1977,** *z,* **2564.**
- **9.** J.M.Timko, S.S.Moore, D.M.Walba, P.C.Hiberty,and D.Cram, J.Am.Chem.Soc., **1977, 2, 4207.**
- **10.** J.S.Bradshaw, B.A.Jones, R.B.Davidson, J.J.Christensen, J.D.Lamb, and R.M. Izatt, J.Or~.Chem., **1982,** *42,* **3362.**
- **11.** B.A.Jones, J.S.Ewadshaw, P.R.Brown, J.J.Chriatensen, and R.M.Izatt, **J.Org.** w., **1983, g, 2635.**
- 12. D.J.Chadwick, I.A.Cliffer, I.D.Sutherland, and R.F.Newton, J.Chem.Soc.Perkin Trans. I, **1984, 1707.**

Received, **10th** August, 1988