STEREOCONTROLLED SYNTHESES OF ASPARTAME [(S)-Asp-(S)-PhOMe] AND ITS (R)-ASPARTYL CONGENER (R) -Asp- (S) -Phomel VIA NITRONE CYCLOADDITION

Davld Keirs and Karl Overton*

Department of Chemistry, University of Glasgow, Glasgow G12 800, Scotland

Abstract--The title compounds have been synthesised via cycloaddition of nitrones (3a,b,c) to 2-chloroacrylonltrile.

The low-calorie dipeptide sweetener aspartame i(S)-Asp-(S)-PhOMel has about 180 times the sweet-**²ness** of sucrose.1 The flrst synthesis was reported in 1966 but **its sweetness was** discovered accidentally 3 two years later during work on the synthesis of the C-terminal tetrapeptide sequence of gastrin, Try.Met.Asp.Phe.NH₂. The commercial importance of aspartame as a non-toxic, lowcalorle artificial sweetener (Canderel; Equal; Nutra-Sweet; Tri-Sweet) has resulted in contmued synthetic effort and additions to the patent literature.⁴

 he principal difficulty with conventional syntheses based on simple peptide coupling is the problem of differentiating between the α - and β -carboxyl groups of (S)-aspartic acid and the consequent need to separate mixtures of regiolsomeric dipeptides.⁵ Resourceful chemical^{6,7,8} and ⁹enzymological solutions have to some extent **overcome** this problem. Two recent syntheses do not depend on a protocol for coupling the natural amino acids but instead elaborate synthetic dipeptide precursors. ~hus, ~uganrl" employed a **chlral** rhodium catalyst **to generate aspartame** (80% d.e) % hydrogenation of N-protected dehydroaspartame. Another inventive but hardly practical recent synthesis¹¹ features as key step the photochemical oxaziridine-amide rearrangement of a dlpeptlde precursor.

We now present a different approach to aspartame, in whlch the aspartyl moiety **was** assembled via 1,3-dipolar cycloaddition of nitrones (3) to the ketene equivalent 2-chloroacrylonitrile*. 12 ment of
We now _]
<u>via</u> 1,3 Our reason for embarking on this synthesis was to see whether the sequence we had successfully used to synthesise stereoselectively the natural β -amino acids β -leucine, β -phenylalanine, β tyrosine¹³ and β -lysine¹⁴ could be applied to make α -aspartyl dipeptides, and whether chirality could be efficiently transferred to the newly generated Q-aspartyl chiral centre by the second

* **we** have found this to be much superior to vinyl acetate,14 since it avolds the low-yleld oxidation step needed to transform the initial adducts into isoxazolidinones.

amino acid [in this **case** (S)-phenylalaninel already incorporated into nitrone (3). The nitrones (2a.b.c) were readily obtained by reacting glyoxylic acid hydrate with the appropriate alkyl hydroxylamine. Nitrone 12a) **was** crystalline, nitrones (2Ul and 12c) were oils. **'H** Nmr showed each of the nitrones **was** the slngle 2-lsomer. **The** methyl ester of nitrone (2b) lfrom methyl glyoxylatel exists in solution as a 1:l mixture of **2** and E isomers and **1s** probably **useless** for asymmetric cycloaddltion with chloroacrylonitrile (see Experimental). Couphng with (Sl-phenylalanine methyl ester hydrochloride I11 was effected in dichloromethane with N-methyl-2-chloropyridinium iodide in presence of triethylamine, affording crystalline (3a) and (3b) and oily (3c) (55-60%). Again, $^{1}_{H}$ nmr showed each nitrone (3a,b,c) was the single Z-isomer. Cycloaddition of each of the nitrones (3a,b,c) with excess **a-chloroacrylonitrile at 80[°]C** led regiospecifically to the adducts $(4a,b,c)$, obtained as mixtures of diastereoisomers at C-3 and C-5 in virtually quantitative yields. They were hydrolysed directly at 20⁰C in aqueous THF containing 0.2-0.4 equivalents of HC1. Purification by flash chromatography over silica gel afforded the isoxazolidinones (5a,b,c) in 75-85% yields as either a mixture of two diastereomers (5a,b) or a single diastereomer (5c). The proportion of diastereomers in each mixture was obtained fr*o*m their 'H **nmr** spectra at 200 MHz **(see** Experimental) and the stereochemical assignments follow from

conversion into either (S)-Asp-(S)-PhOMe or (R)-Asp-(S)-PhOMe on hydrogenolysis as below. Most striking is the fact that nitrone (3c) leads to a single diastereomer (5c) [3R]. Thus, introduction of a second chiral centre, (S) -CHMePh, reinforces the directing effect¹⁵ of (S) -PheOMe and ensures cyclo addition of chloroacrylonitrile exclusively to the re, re-face of nitrone (3c). By contrast, in nitrone 13b) IR = (R)-CmePhl, the two chiral directing groups are **in** conflict, and cyclo addition is <u>less</u> diastereoselective $[(3R):(3S) = 2:3]$ than with nitrone $(3a)$ $[R = CH_2Ph]$ 1(3R):13s) = 5:21. Unfortunately, the single isomer **(5c)** leads not to aspartame, but to the tasteless (R)-aspartyl epimer **as** the sole product (see below).

Hydrogenolysie of the isaxazolidinones (5a.b.c) with Pearlman's catalyst in aqueous ethanol under atmospheric pressure at either 20° C (5a) or 70° C (5b,c) afforded the dipeptides in nearquantitative yields on filtration of catalyst and removal of solvent in vacuo. Thus, the major (3s)-lsomer of (Sb), separable from the minor 13R)-isomer by flash chromatography, afforded the sweet-tasting aspartame (S)-Asp-(S)-PhOMe (6), identical (mp, $\left[\alpha\right]_n$, 1 H and 13 C nmr and ir) with an authentic specimen. Similarly, hydrogenolysis of the single isomer (5c) afforded the tasteless (R)-Asp-(S)-PheOMe (7), identified by m p, $[\alpha]_n^3$ and the very close correspondence of its spectroscopic properties (ms, ir, ¹H and ¹³C nmr) with those of aspartame.

EXPERIMENTAL

The following instruments were used: Nmr: Perkin-Elmer R32 (90 MHz) or Bruker WP200SY (200 MHz). ¹H and ¹³C nmr spectra are for CDCl₃ solutions at 200 MHz (^{1}H) or 50 MHz (^{13}C) unless otherwise indicated. Ms : VG/Kratos MS 9025. Ir : Perkin Elmer 983. Optical Rotations: Optical Activity AA-100.

Nitrones (2a.b.c)

To glyoxylic acid hydrate (Aldrich; 40 mmol), suspended in CH₂Cl₂ (50 ml) was added the appropriate hydroxylamine (or its oxalate and 1 equ. Et₃N) (40 mmol) and the solution stirred 5 h at 20^{°C.} More CH₂Cl₂ (50 ml) was added, the CH₂Cl₂ solution washed with water (50 ml), dried $(Na₂SO_A)$, and the solvent removed in vacuo to leave the crude nitrones $(2a,b,c)$. **Thus** N-benzylhydroxylamine afforded nitrone (Za) as a yellow paste which, crystallised from $Et_2O/CHCl_3$ (62%), had mp 92-93^O. $\underline{m}/\underline{z}$ (C₈H₉ON, M⁺ -CO₂) 135.0685 (135.0684). ¹H Nmr (90 MHz) 6 5.06 (2H, *S*, PhCH₂N), 7.28 (1H, *S*, H-C=N), 7.45 (5H, *S*, C_{CH_c); ¹³C nmr 6 70.48 (CH₂Ph), 129.4-} 130.3 ($\underline{C} = N + \underline{C}_6 H_5$), 161.21 ($\underline{C}O_2H$).

N-(R)-Phenethylhydroxylamine oxalate,¹⁶ mp 181-183[°], afforded the oily nitrone (2b) (61%). μ/z (C₉H₁₁ON, M⁺ -CO₂) 149.0850 (149.0787). ¹H Nmr (90 MHz) 6 1.82 (3H, <u>d</u>, J = 6.0 Hz, CH₃),

5.21 (1H, q, J = 7.0 Hz, CHCH₃), 7.39 (5H, s, C_cH_c), 7.45 (1H, s, H-C=N), ¹³C nmr 17.68 (CH₃), 74.74 (CH.CH₃), 127.0-128.9 (C₆H₅), 135.45 (C=N), 161.13 (CO₂H).

N-(S)-Phenethylhydroxylamine oxalate, 16 mp 177-180⁰C afforded the oily nitrone (2c) (74%). ¹H Nmr (90 MHz) δ 1.85 (3H, <u>d</u>, J = 6.0 Hz, CH₃), 5.23 (1H, q, J = 7.0 Hz, CHCH₃), 7.35 (5H, m₁ $C_{c}H_{c}$), 7.53 (1H, s, H-C=N).

Methyl ester of nitrone (2b). Methyl glyoxylate¹⁷ (11.4 mmol) condensed as above with N-(R)-phenethylhydroxylamine oxalate afforded the methyl ester of nitrone (2b) which, crystallised from Et_0 O/CHCl₃ (82%), had mp 84-85⁰. ¹H Nmr (90 MHz) 6 3.75 and 3.79 (1:1.1) (3H, s, CH₂OCO), 5.16 and 7.07 (1:1.2) (1H, g , J = 7.0 Hz, CHCH₃).

Nitrones (3a,b,c)

Nitrone (2a,b or c) (20 mmol), (S)-phenylalanine methyl ester hydrochloride (20 mmol), N-methyl-2-chloropyridinium iodide¹⁸ (24 mmol) and Et₃N (70 mmol) in dry CH₂Cl₂ (100 ml) were refluxed for 1 h (t.l.c.). The clear solution was washed three times with HCl (5%; 40 ml) and once with water (40 ml), dried and solvent removed in vacuo. The nitrones $(3a,b,c)$ were eluted from silica gel with ethyl acetate-hexane (45:55).

Nitrone (3a) (48%), mp 98-100^oC [EtOAc/light petroleum (40-60^oC)], [a]_n -8.1^o (c = 0.1 in CRCl₂); m/z (C₁₀H₂₀O_AN₂, M⁺) 340.1437 (340.1423); ir (KBr disc) 1234, 1645, 1742 cm⁻¹; ¹H nmr δ 3.08 (1H, \underline{dd} , J = 6.0, 14.0 Hz, CHCH_AH_RPh), 3.18 (1H, \underline{dd} , J = 7.0, 14.0 Hz, CHCH_AH_RPh), 3.67 (3H, g, co₂CH₃), 4.88 (1H, m, CH₂CHN), 4.92 (2H, g, CH₂Ph), 7.05 (1H, g, H-C=N), 7.22 (5H, m, C_εH_c), 7.40 (5H, <u>s</u>, C_cH_c), 10.22 (1H, <u>d</u>, J = 7.0 Hz, NH); ¹³C nmr 6 37.68 (CCH₂Ph), 52.13 (CH₃OCO), 53.39 (CH-N-), 71.43 (CH₂-N=), 126.9-135.7 (2 x C₆H₅), 160.1 (NHCO), 171.0 (CO₂CH₃). Mitrone (3b) (58%), mp 102-104°C from Et₂0; [a]_D -28.3° (c = 0.12 in CHCl₃); \mathbb{R}^{\prime} \mathbb{R}^{\prime} (C₂₀H₂₂^O₄N₂' M^{\dagger}) 354.1577 (354.1580); (M^{\dagger} -OH) 337.1538 (337.1552); 1r (KBr disc) 1218, 1239, 1258, 1648, 1742 cm^{-1} ; ¹H nmr δ 1.79 (3H, $\underline{\text{d}}$, J = 7 Hz, CH₃CH), 3.07 (1H, $\underline{\text{dd}}$, J = 6.0, 14.0 Hz, CHCH_AH_BPh), 3.20 (1H, dd, J = 7.0, 14.0 Hz, CHCH_AH_RPh), 3.66 (3H, s, CO₂CH₃), 4.86 (1H, m, CH₂CHN), 5.09 (1H, q , J = 7.0 Hz, PhCHN), 7.14 (1H, s, H-C=N), 7.23 (5H, m, C_{pHz}), 7.40 (5H, s, C_{pHz}), 10.27 (1H, d, $J = 7.0$ Hz, NH₁; 13 C nmr δ 18.67 (CH₃CH), 37.82 (CH₂Ph), 52.11 (CH₃OCO), 53.53 (CH-N), 76.28 (CH-N=), 126.9-136.5 (2 x C_gH_g), 160.35 (NHCO), 171.08 (CO₂CH₃). Mitrone (3c) (54%), oil, $[\alpha]_n + 10.5^\circ$ (c = 0.07 in CHCl₃); $\underline{m}/\underline{z}$ (C₂₀H₂₁O₃N₂, M⁺-OH) 337.1560

(337.1552); ir (CHCl₃) 1650, 1735 cm⁻¹; ¹H nmr δ 1.82 (3H, \underline{d} , J = 7.0 Hz, CH₃CH), 3.07 (1H, $\underline{d}\underline{d}$, $J = 6.0$, 14.0 Hz, CHCH_aH_pPh), 3.18 (1H, dd, J = 7.0, 14.0 Hz, CHCH_aH_pPh), 3.70 (3H, s, CO₂CH₃), 4.86 (1H, m, CH₂CHN), 5.09 (1H, g, J = 7.0 Hz, PhCHN), 7.14 (1H, s, H-C=N), 7.13-7.28 (5H, m, $C_{6}H_{5}$), 7.42 (5H, \underline{s} , $C_{6}H_{5}$), 10.27 (1H, \underline{d} , J = 7.0 Hz, $N_{\underline{H}}$); ¹³C nmr δ 18.76 (CH₃CH), 37.93 (CH₂Ph), 52.22 (CH₃OCO), 53.57 (CH-N-), 76.39 (CH-N=), 126.96-136.78 (2 x C₆H₅), 160.37 (NHCO), 171.19 (\underline{CO}_2CH_3) .

Cycloadducts (4a.b.c)

<code>Nitrones (3a,b,c)</code> (1.5 mmol) in 2-chloroacrylonitrile (10 ml) were heated at 80^OC (oil bath) under Ar for 15 min. Excess 2-chloroacrylonitrile was removed in vacuo, affording the crude adducts (4a,b,c) in 95-100% yield. Flash chromatography of (4a) (EtOAc/hexane 25:75) afforded the 1 cyclaadduct(s) (93%) with unchanged H **nmr** spectrum, which had complex continuous absorption (11H) between 63 and 65 and a complex multiplet (10H) at 67.0-7.5. The CH₂OCO signal at 6 3.74 was $spl1t$ in two. $m/2$ 392 (M⁺-Cl). Ir V_{max} (CHCl₃) 1520, 1685 and 1745 cm⁻¹; band for CN (2200- 2260 cm^{-1}) absent.

The spectroscopic properties of adducts (4b) and (4c) were analogous to those of (4a), with the changes to be expected for replacement of CH₂Ph by (R)- or (S)-CHMePh. In particular, in the 1 H nmr spectra, the CH₃CH and CH₃OCO signals indicated formation of two (3c) or more than two (3b) diastereomeric adducfs. The crude cycloadducts were used for hydrolysis.

Isoxazolidin-5-ones (5a,b,c)

CyCloadduct i4a.b.c) (1.5 mmol), dissolved **in** a minimum volume of **THF was** diluted with H20 (10 ml) and suffrcienr THF added to produce a single phase. Aqueous HC1 (0.2-0.4 **equ.** of IN) was added, the solution was stirred at 20 $^{\circ}$ C for 16-24 h then neutralised (IN NaOH, congo red), concentrated to 1/3 volume and extracted with EtOAc (5 x 10 ml). Drying (Na₂SO_A), removal of solvent in vacuo, and flash chromatography over silica gel (35-40% EtOAc/hexane) afforded the 1soxazolidinones (5a, $b,c)$ in $75-85%$ yield.

Hydrolysis of adduct (4a) afforded the oily (5a) (82%) consisting of a mixture of C-3 epimers $[(3R):(3S) = 5:2$ from CH₂OCO signals in ¹H nmr spectrum at 200 MHz]. They were inseparable by glc (SE-54 capillary, R.I. = 2555) and by preparative flash chromatography on silica. 1_H Nmr 6 2.75-3.23 (4H, \underline{m} , CH₂CO + PhCH₂CH), 3.68 and 3.78 (3H, 2 **x** \underline{s} , CH₂OCO), 3.84-4.23 (3H, \underline{m} , PhCH₂-N + CH-N), 4.71-4.88 (l~, **m,** CH-N), 6.95-7.35 (Ion, **g,** 2 **x** C&15), 7.60 and 7.71 (1". 2 **n d, NE).** 13c Nmr 6 31.35 (CCH₂Ph), 37.101⁺ + 37.578⁺ (CH₂CO), 52.19 + 52.13 (CH₃OCO), 52.87 + 52.51 (N-CH-CONH), 62.45 + 62.39 (PhCH₂N-), 64.03 (CHCO₂Me), 126.87 - 129.33 (2 **x** C_4H_5), 168.38 + 168.14 (CONH), $170.92 + 170.89$ (CO_2CH_3), $173.59 + 173.90$ ($COCH_5$).

Hydrolysis of adduct (4b) and chromatography afforded the mixture of C-3 epimers (5b; 83%;

^{&#}x27;Major followed by minor.

(3R): (3S) = 2:3 from CHCH₂ signals in ¹H nmr at 200 MHz]. m/z (C₂₂H₂₄O_cN₂, M⁺) 396.1700 (396.1685). The mixture was resolved by flash chromatography: 35% EtOAc-hexane eluted (3S)-(5b) mp 112-113[°]. $\underline{m}/\underline{z}$ (M⁺) 396.1667. ir (CHCl₃) v_{max} 1782, 1735, 1673 cm⁻¹. [a]_n = -40[°] (c = 0.064 in CHCl₃). ¹H Nmr δ 1.54 (3H, \underline{d} , J = 6.0 Hz, CH₃CH), 2.75 (2H, m_r, CH₂CO), 3.05 (1H, \underline{dd} , J = 6.0, 15.0 Hz, CHCH_nH_nPh), 3.17 (1H, dd, J = 5.0, 15.0 Hz, CHCH_nH_nPh), 3.74 (3H, s, CO₂CH₃), 3.87 (1H, <u>dd</u>, J = 5.5, 9.0 Hz, COCHN), 4.11 (1H, q, J = 6.0 Hz, PhCHN), 4.81 (1H, m, CH₂CHN), 7.10-7.40 (10H, m, 2 x C_rH_c), 7.84 (1H, <u>d</u>, J = 10.0 Hz, NH₁); ¹³C nmr δ 20.08 (CH₂CH), 30.29 (PhCH₂), 38.12 (COCH₂), 52.72 (COOCH₃), 52.96 (CH-NHCO), 61.81 (PhCH-N), 67.12 (NHCOCH-N), 116.03-138.79 (2 x C_cH_c), 168.51 (CONH), 171.22 (CO₂CH₃), 175.13 (COCH₂). 40% EtOAc-hexane eluted (3R)-(5b), oil, m/z (M⁺) 396.1692 (396.1685); ir v_{max} (CHCl₃) 1780, 1735, 1670 cm⁻¹. $[\alpha]_n + 51.9^\circ$ (c = 0.053, CHCl₃). ¹H Nmr 6 1.47 (3H, <u>d</u>, J = 8.0 Hz, CH₃CH), 2.29 (1H, dd, J = 10.0, 17.5 Hz, CH_AH_RCO), 2.77 (1H, dd, J = 5.0, 17.5 Hz, CH_AH_RCO), 3.09 (1H, <u>dd</u>, J = 7.5, 14.5 Hz, CHCH_AH_RPh), 3.25 (1H, <u>dd</u>, J = 5.0, 14.5 Hz, CHCH_AH_BPh), 3.74 (3H, <u>5</u>, CO₂CH₃), 3.88 (1H, q, J = 8.0 Hz, PhCHN), 3.88 (1H, <u>dd</u>, J = 4.0, 17.0 Hz, COCHN), 4.82 (1H, m, CH₂CHN), 7.10-7.30 (10H, m, 2 x C₆H₅), 7.58 (1H, <u>d</u>, J = 8.0 Hz, NH₁); ¹³C nmr 6 19.01 (CH₃CH), 32.67 (PhCH₂), 37.50 (COCH₂), 52.57 (COOCH₃), 52.95 (CH-NHCO), 63.44 (PhCH-N), 67.14 (NHCOCH-N), 127.36-137.22 (2 x C_cH₅), 168.97 (CONH), 171.23 (CO₂CH₃), 173.73 $(COCH₂)$.

Hydrolysis of adduct (4c) and chromatography furnished a single isoxazolidinone (5c) (77%), mp 92-94⁰. m/<u>z</u> (M⁺) 396.1693 (396.1685); ir v_{max} (KBr disc) 1678, 1787, 1790 cm⁻¹. [a]_D + 45⁰ (c = 0.04, CHCl₃). ¹H Nmr δ 1.52 (3H, \underline{d} , J = 6.0 Hz, CH₃CH), 2.73 (1H, \underline{dd} , J = 14.0, 20.0 Hz, CH_AH_BCO), 2.90 (1H, <u>dd</u>, J = 3.0, 20.0 Hz, CH_AH_BCO), 3.01 (1H, <u>dd</u>, J = 5.0, 15.0 Hz, CHCH_AH_RPh), 3.21 (1H, dd, J = 4.5, 15.0 Hz, CHCH_AH_RPh), 3.74 (3H, <u>s</u>, CO₂CH₃), 3.88 (1H, dd, J = 2.5, 15.0 Hz, COCEN), 4.12 (1H, q , J = 6.0 Hz, PhCHN), 4.72 (1H, m, CH₂CEN), 7.4 (10H, m, 2 x C₆H₅), 7.78(1H, d, J = 8.0 Hz, NH); 13 C nmr δ 19.92 (CH₃CH), 30.09 (PhCH₂), 37.36 (COCH₂), 52.36 (CH₃OCO), 53.23 (CHCO₂Me), 61.64 (PhCH-N-), 66.74 (NHCOCH-N-), 126.17-138.66 (2 x C_cH_c), 169.01 (CONH), 171.04 (COOCH_3) , 174.99 (COCH_2) .

Isoxazolidinone [5b; OMe in place of (S)-PhOMe]. Cycloaddition of the methyl ester of nitrone (2b) with chloroacrylonitrile and hydrolysis, as before, afforded the oily <u>1soxazolidinone</u> of the <u>title</u> (59%). m/z (C₁₃H₁₅NO₄, M⁺) 249.1005 (249.1001). ¹H Nmr (90 MHz) 6 3.56 and 3.80 (1.23:1) (3H, \underline{s} , CH₃0CO). Ir v_{max} (CHCl₃) 1740, 1780 cm⁻¹.

Hydrogenolysis of Isoxazolidinones (5a,b,c)

Isoxazolidinone (3S)-(5b) obtained as above (100 mg, 0.25 mmol) in EtOH/H₂O (25 ml, 3:2) was hydrogenated over Pd(OH), on charcoal (20 mg, 20%) at 70°C and 1 Torr. for 5 h. Filtration and removal of solvent **m** vacua left a white solid (74 mg; 100%). Washing with chilled water afforded the sweet (S)-Asp-(S)-PhOMe (Aspartame) (6) (65 mg), mp 243-247[°], [a]_n +29.8[°] (c = 0.05, acetic acid) [Lit¹⁰ mp 248-250[°]C, $[\alpha]_n$ +30.3[°] (c = 0.1, acetic acid)]. Comparison of ¹H and ¹³C nmr at 200 MHz with those of commercial aspartame (Aldrich) proved identical.

Isoxarolidinone (3R)-(5b) (100 mg), hydrogenated under the same conditions, afforded the tasteless (R)-Asp-(S)-PhOMe (7) (75 mg), mp 154-157^oc, [a]_n -17.4^o (c = 0.05, H₂O) [Lit. mp 159^oc, $[\alpha]_{\text{n}}$ -18^O (c = 0.1, H₂O)].

Hydrosenation of the single isomer (5c) (100 mq) likewise afforded (R)-Asp-(3)-PhOMe (100%).

Hydrogenation of the inseparable mixture of dlastereomers (5a) (100 mg) under the above conditions but at 20^oC afforded (100%) a mixture of (R)-Asp-(S)-PhOMe and (S)-Asp-(S)-PhOMe in a 5:2 ratio from the relative intensities of CH₂COO signals (6 3.61 and 3.59) (d_c-DMSO, 200 MHz).

ACKNOWLEDGEMENT

we thank the S.E.R.C. for studentship support

REFERENCES

- 1. M.R. Cloninger and **R.E.** Baldwin, Science, 1970, 170, 81; J.A. Oppermann. **E.** Muldoon,and R.E. Ranney, J. Nutr., 1973, 103, 1454.
- 2. J.M. Davey, A.H. Laird, and J.S. Morley, J. Chem. Soc. (C), 1966, 555.
- 3. R.N. Mazur, J.M. Schlatter, and A.H. Goldkamp, J. **AmLm.** Chem. Soc., 1969, **91,** 2684.
- 4. U.S. 3,492131 (1968, 1970); B.P. 1,243169 (1971); U.S. 3,879372 (1972); U.S. 3,933781 (19761; U.S. 4,173562 (19791.
- 5. Y. Ariyoshi and N. Sato, <u>Bull Chem. Soc. Japan</u>, 1972, <u>45</u>, 942; Y. Ariyoshi, T. Yamatani,
N. Uchiyama, and N. Sato, <u>ibid</u>., 1972, <u>45,</u> 2208; Y. Ariyoshi, T. Yamatani, N. Uchiyama, N. Uchiyama, and N. Sato, <u>ibid</u>., 1972, <u>45</u>, 2208; Y. Ariyoshi, T. Yamatani, N. Uchiyama,
Y. Adachi, and N. Sato, ibid., 1973, 46, 1893; Y. Ariyoshi, T. Yamatani and Y. Adachi, ibid., 1973, *46,* 2611.
- 6. J.S. **Tou** and B.D. vineyard. J. Org. Chem., 1985, *50,* 4982.
- 7. F.C. Vinick and S. Jung, Tetrahedron Lett., 1982, 23, 1315.
- 8. H. Pietsch, Tetrahedron Lett., 1976, 4053.
- 9. **Y.** ISOwa, M. OhmOTi, **T.** Ichikawa, and K. Mori, Tetrahedron Lett.. 1979. 2611; K. Oyama, **K. Kihara,** and Y. Nonaka, **J.** Chem. **Soc.,** Perkin Trans. 2, 1981, 356; K. Oyama, **5.** Nishimura. Y. Nonaka, K. Kihara, and T. Hashimoto. J. Org. Chem.. 1981. *46,* 5242.
- 10. C. Fuganti, P. Grasselli. **I,.** ~alpezzi, and P. casati. 3. org. Chem., 1986, *2,* 1126.
- 11. P. Duhamel, **9.** Goument, and J.-C. Plaquevent, Tetrahedron Lett., 1987, *28,* 2595.

12. **H.** Schnelder, **Helv.** Chim. Acta, 1982, **65,** 726; S. Ranganathan, D. Rangamthan, and A.K. Mehrotra, Synthesis, 1977, 289.

13. D.F.C. Moffat, Ph.D. Thesis, Glasgow 1986; R. Tomanek, Ph.D. Thesis, Glasgow, 1988.

- 14. D. Keirs, D. Moffat, and K. Overton, J. Chem. Soc., Chem. Comm., 1988, 654.
- 15. S. Masamune, W. Choy, J.S. Petersen, and L.R. Sita, Angew. Chem. Int. Ed. Engll, 1985, 24, 1.
- 16. P.M. Wovkulich and M.R. Uskokovic, Tetrahedron, 1985, 41, 3455.
- 17. T.R. Kelly, T.E. Schmidt, and T.G. Haggerty, Synthesis, 1972, 544.
- 18. E. Bald, K. Saigo, and T. Mukalyama, Chem. Lett., 1975, 1163.

 \bar{z}

Received, 22nd August, **1988**