HOMOLYTIC CYCLIZATION OF O-ALKENYL-Se-PHENYLSFLENOCARBONATES. SYNTHESIS OF LACTONES

Mario D. Bachi* and Eric Bosch

Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel.

Dedicated to Sir Derek Barton on the occasion of his 70th birthday.

Abstract - O-Alk-3-enyl- and O-alk-4-enyl-Se-phenylselenocarbonates undergo regio-specific $\underline{\text{exo}}$ cyclization to the corresponding δ - and δ -lactones on treatment with tri-n-butylstannane and AIEN.

In a recent communication we described the synthesis of α -alkylidene-7-lactones by intramolecular addition of alkoxycarbonyl free-radicals to acetylenes. Alkoxycarbonyl radicals are readily generated by trialkylstannane-AIBN (azobisisobutyronitrile) induced homolysis of the carbon-selenium bond of selenocarbonates. 1,2 The transient radicals produced by this method

Scheme I

Table: Reaction of O-alk-3-enyl-Se-phenylselenocarbonates 1 with tri-n-butylstannane and AIBN

<u> </u>	Selenocarbonates 1	Method	Products	Isolated yields (%)
a	Ph O SePh	A	Ph	80 88 (g.c.)
b	O Se Ph	Α	↓ °	91
С		В	5.4:4.6 O	>90
đ	SePh	A		99
е		С	$ \begin{array}{c} $	>90
f	O SePh	A	2.5:1	92
g	Ph O	A	Ph	74
h	SePh	A		95

Methods: A. Standard conditions: A solution of the selenocarbonate (1 mmol), tri-n-butylstannane (1.15 equiv., 0.02M) and AIBN (0.1 equiv.) in benzene (57 ml) was heated at 80°C for 30 min. Products isolated by distillation (\underline{b} , \underline{d} , \underline{f} , \underline{g} , \underline{h}) or flash chromatography (\underline{a}). B. As for A without solvent.

C. As for A with tri-n-butylstannane concentration = 1 M.

are subject to several competing processes, principally reduction and decarboxylation; ² consequently their use in organic synthesis has been limited. We now describe a general synthesis of lactones involving the ring closure of O-alkenyloxycarbonyl radicals which have various substitution patterns.

O-Alk-3-enyl-Se-phenylselenocarbonates 1,3,4 were treated with tri-n-butylstannane as specified in the Table. The alkenyloxycarbonyl radicals 2 generated in this way undergo the transformations illustrated in Scheme I. The experimental results summarized in the Table indicate that the ring closure of alk-3-enyloxycarbonyl radicals proceeds exclusively in the exo mode, cf. 2 \rightarrow 6. No products of endo addition, cf., 2 \rightarrow 8 \rightarrow 9, were detected. 5 Under standard conditions (Table, Method A) the resulting 7-lactones 7 were isolated in excellent yield (entries a, b, d, f, h). The sole exception (entry g) involves the derivative of a secondary benzylic alcohol for which decarboxylation is favoured as a highly stabilized benzylic radical 4, R¹=Ph, $R^2=R^3=R^4=R^5=H$) is formed.⁶ Decarboxylation, cf. $2 \rightarrow 4 \rightarrow 5$, does not interfere with the cyclization of other secondary (entry f) or tertiary selenocarbonates (entry h). It is noteworthy that the regiochemistry of cyclization is not altered by introduction of a second substituent on the double bond at the site to which the free-radical adds. Direct hydrogen transfer to intermediate radicals 2 to give the corresponding formyl ester 3 was only observed in experiments performed under especially high concentrations of tri-n-butylstannane (entries c and e). The homologous O-alk-4-enyl-Se-phenylselenocarbonate 10 regiospecifically cyclized to the corresponding 6-lactone 11 (91%) when reacted at low concentration of tri-n-butylstannane,7 the formyl ester 12 (3%) being a minor by-product (Scheme II). When the reaction was performed under standard conditions (\underline{cf} . Table, Method A) the combined yield of 11 and 12 remained \underline{high}^5 but the product ratio 11:12 decreased to 4:1. This indicates that, as expected, the rate of 6exo cyclization of alkoxycarbonyl radicals is considerably slower than that of the 5- exo cyclizations described in the Table. The reported failure to cyclize a similar selenocarbonate is probably due to different (unspecified) reaction conditions. In the following paper we report the related synthesis of 6-membered ring ketones.9

Scheme II

SePh Bu₃SnH, AIBN
$$O$$
 + OCHO

10 11 12

ACKNOWLEDGEMENT

This research was supported by the Fund for Basic Research, administered by the Israel Academy of Sciences and Humanities.

REFERENCES

- 1. M.D. Bachi and E. Bosch, Tetrahedron Lett., 1986, 27, 641.
- 2. J. Pfenninger, C. Heuberger, and W. Graf, Helv. Chim. Acta, 1980, 63, 2328.
- 3. Phenylselenocarbonates of primary and secondary alcohols were prepared by reacting the corresponding chloroformates with phenylselenol and pyridine in benzene (room temperature).² The selenocarbonate of the tertiary alcohol was prepared by treatment of the alcohol with sodium hydride (0.1 equiv.) and carbonyldiimidazole (1.1 equiv.) in THF for 24 h (room temperature) followed by phyenylselenol in benzene and mixing for an additional 3 h.
- 4. All compounds gave analytical and spectral data consistent with the assigned structures.
- Nmr (270 MHz) analysis of the crude reaction mixture indicated quantitative conversion to the products indicated.
- 6. For a similar decarboxylation see: P. Beak and S.W. Moje, J. Org. Chem., 1974, 39, 1320.
- Individual solutions of tri-n-butylstannane (1.1 equiv.) and AIBN (0.1 equiv.) were added during 90 min. to a solution (0.02 M) of 10 in benzene (80°)
- 8. D. Crich and S.M. Fortt, Tetrahedron Lett., 1988, 29, 2585.
- 9. M.D. Bachi and D. Denenmark, Heterocycles, the following paper.

Received, 24th August, 1988