SYNTHESIS OF $(\pm) - (2R^*, 11bS^*) - 3' - ARYL - 9, 10 - DIMETHOXY - 1, 3, 4, 6, 7, 11b - HEXAHYDROSPIRO [BENZO[<math>\alpha$]QUINOLIZIN-2,5' - OXAZOLIDINE] - 2',4' - DIONES.

J. Carlos Menéndez, Carmen Avendaño, and Mónica M. Söllhuber* Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain

<u>Abstract</u> — The synthesis of $(\frac{1}{2})-(2R^*, 11bS^*)-3^*-aryl-9,10-dimethoxy-1,3,4,6,7,11b$ hexahydrospiro [benzo[a] quinolizin-2,5'-oxazolidine] -2',4'-diones (<u>1</u>) was achieved bytwo alternative routes involving the treatment of cyanohydrin <u>3</u> with aryl isocyanatesvia 4-imino derivatives <u>5</u> and <u>6</u> or the cyclization of the hydroxy ester <u>9</u> with arylisocyanates. Compounds <u>1</u> present a*trans*conformation in the quinolizidine systemand exist in a (2R*, 11bS*) configuration.

The discovery of α_2 -adrenoceptor antagonism for several 2-substituted benzo[a]quinolizidines^{1,2} may provide a basis on which to explain the antihypertensive³ activity described for some of these derivatives, while, at the same time, it allows the prediction of additional pharmacological properties, like antidepressant⁴ and hipoglycemic⁵ activities, among others. Within the scope of our current research on spiro derivatives with structural and electronic characteristics similar to those of 2 β -substituted benzo[a]quinolizidinic α_2 -adrenoceptor antagonists⁶, we considered of special interest the synthesis of the ([±])-(2*R**, 11b*S**) diastereomers of 3'-aryl-9,10-dimethoxy-1,3,4,6,7,11b-hexahydrospiro[benzo[a]quinolizidin-2,5'-oxazolidine] -2',4'-diones (1).

A suitable route for the synthesis of diastereomers <u>1</u> would be the transformation of the 9,10dimethoxybenzo[a]quinolizidin-2-one (2)⁷ into the 2,4-oxazolidinedione system <u>1</u> via its cyanohydrin <u>3</u>, followed by treatment with anyl isocyanates and hydrolysis⁸ (Scheme 1). This approach is based on the stereoselective cyanation of substituted cyclohexanones through an axial attack of the cyanide ion on the most stable conformation.⁹

Thus, the treatment of the cyanohydrin $\underline{3}^6$ with two equivalents of aryl isocyanate always led to 4'-imino-2-oxazolidinones $\underline{5}$ and, in some cases, also to their 4'-carbamoylimino derivatives $\underline{6}$.

i CH_2Cl_2 -DMF, Et₃N or DABCO, Reflux or ultrasound.

ii 35 % HCl, EtOH, Reflux, 1 h.

Scheme 1

As it has been previously reported,⁸ the moderate yields of iminooxazolidinones 5 are mainly due to formation of the 5-imino-2,4-imidazolidinediones 7 as secondary products, which arise from the reaction between two molecules of isocyanate 4 and one molecule of hydrogen cyanide formed in dissociation of cyanohydrin 3 to 2. Changes in the basic catalyzer using triethylamine or 1,4-azabicyclo[2.2.2] octane did not avoid the formation of 7. Acid hydrolysis of 5 or 6 gave the expected 2,4-oxazolidinediones in good yields.

In an attempt to improve the above-described method, an alternative procedure, shown in Scheme 2 was also assayed. Acid hydrolysis of cyanohydrin 3 to the α -hydroxy acid 8, followed by esterification in ethanol employing dry hydrogen chloride or boron trifluoride etherate as a catalyst, led to 9 in high yield. When 9 was heated in the absence of solvent with aryl isocyanates 4 at 60 °C for 16 h, the desired 2,4-oxazolidinediones were obtained in one step. The *O*-carbamoyl derivatives described in the literature for analogous reactions¹⁰ were not isolated in this case.

i 35% HCl, reflux, 2 h ii EtOH, HCl (g) or ${\rm BF_3-Et_20},$ reflux iii R-NCO, Δ

Scheme 2

In the stereochemical analysis of compounds <u>1</u>, the conformation of the quinolizidine ring system and the relative configurations of the chiral atoms are to be considered. A predominant *trans* conformation can be proposed on the basis of ir^{11,12} and ¹³C-nmr^{13,14} data. Thus, compound <u>1a</u> shows a coupling constant ${}^{1}_{J}({}^{13}C-H)$ of 133 Hz for C_{11b} and chemical shifts of 51.40 and 29.61 ppm for C₆ and C₇, respectively.

The assignment of the (2*R**, 11bs*) configuration to compounds <u>1</u> was based upon two independent criteria: the high value found for the half-width of the C₄, signal (W_{1/2} \approx 18 Hz) in the ¹³C coupled spectrum of <u>1a</u>, which is in agreement with the vicinal coupling between C₄, and the two *anti* C₁-H and C₃-H hydrogen atoms;¹⁴ and the found deshielding effect of the C₄, carbonyl group on the C_{11b} proton¹⁵ in the ¹H-nmr spectrum (signal al ca. 4.2 ppm for <u>1a</u>).

EXPERIMENTAL

Melting points are uncorrected and were determined in a Büchi apparatus. Spectral data were recorded on the following instruments: ir — Perkin Elmer 577; ¹H-nmr — Hitachi-Perkin Elmer R-24 (60 MHz) and Brucker WM-200-SY (200.16 MHz); ¹³C-nmr — Brucker WM-200-SY (50.32 MHz). All chemical shifts are referred to TMS. Elemental analyses were determined using a Carlo Erba Elemental Analyser model 1104.

 $(\frac{1}{2})-(2R^*, 11bS^*)-3^*-Aryl-4^*-imino-9, 10-dimethoxy-1, 3, 4, 6, 7, 11b-hexahydrospiro[benzo[a]quinolizin 2,5^*-oxazolidin]-2^*-ones (5) and (<math>\frac{1}{2}$)-(2R*, 11bS*)-3^*-aryl-4*-arylcarbamoylimino-9, 10-dimethoxy-1, 3, 4,6,7, 11b-hexahydrospiro [benzo[a]quinolizin-2,5*-oxazolidin]-2*-ones (6). A mixture of 3.5 mmol of cyanohydrin 3, the suitable isocyanate 4 (7 mmol), and triethylamine (0.2 g) or 1,4-diazabicicle -[2.2.2]octane (0.2 g) in 35 ml of dry CH_2Cl_2 -dimethylformamide (6:1) was irradiated with ultrasound at room temperature for 2-3 h. The reaction mixture was evaporated *in vacuo* and the residue obtained was extracted with hot EtOH, from which were successively precipitated crops of N, N'diarylurea and 1,3-diaryl-4-imino-2,5-imidazolidinediones 7, followed by compounds 5 and 6, which were collected by filtration (Table 1).

 $(\frac{1}{2})$ -(2*R**, 11b*S**)-2-Hydroxy-9,10-dimethoxy-1,3,4,6,7,11b-hexahydrobenzo[*a*]quinolizine-2-carboxylic acid Hydrochloride (<u>8</u>). A mixture of 5 g (17.4 mmol) of <u>3</u> and 10 ml of 35% aqueous HCl was heated in a 120 °C bath for 2 h. The reaction mixture was kept at 0 °C for 24 h and the inorganic solid formed was filtered off. The addition of 10 ml of EtOH allowed crystallization of 4.8 g (80 %) of <u>8</u>; mp 255-258 °C (EtOH). Anal. Calcd for C₁₆H₂₂NO₅Cl: C, 55.89; H, 6.40; N. 4.08. Found: C, 55.61; H, 6.40; N, 3.95. Ir (KBr): 1700 cm⁻¹ (C=0). ¹H-Nmr (60 MHz, d₆-DMSO) δ : 6.80 and 6.60 (2 s, 2H, 8-H and 11-H), 5.20 (s, 1H, OH), 4.35 (d, σ = 11 Hz, 1H, 11b-H), 3.70 (s, 6H, 2 OMe), 3.60-1.60 (m, 10H).

Come d	Viold/9	mp /°C (recryst.)	In(KBn)/cm ⁻¹				¹ H-Nmr (d ₆ -DMSO, 60 MHz) ^b δ						Elemental analysis		
no.	THE DUY &		Z	C-H ^a	° ₂ ,≃0	C ₄ ,=N	NH (s,1H)	8-H and 11- (2 s, 2H)	H 11b-H (m,1H)	0Me (s,6H)	R (m)	с 	alculat <u>Found</u> H	ated <u>ind</u> N	
5a	23	206-207	3420	2800	1800	1680	с	6.80, 6.70	4,05	3.65	7.50	67.81	6.14	10.32	
		(EtOH)		2760								67.59	6.03	10.12	
<u>5b</u>	20	111-113	3290	2800	1795	1680	9.00	6.70, 6.65	4.00	3.70	7.60-7.20	62.51	5.44	9.51	
		(EtOH)		2755								62.37	5.31	9.37	
<u>5c</u>	40	119-121	3460	2800	1800	1680	7.95	6.80, 6.70	4.15	3.75	7.80-7.50	62.51	5.44	9.51	
		(iC ₃ H ₇ OH)		2765								62.28	5.29	9.23	
<u>5d</u>	35	237-238	3440	2800	1790	1670	8.60	6.78, 6.67	4.00	3.72	8.20-8.10	70.90	5.91	9.19	
		(1C ₃ H ₇ OH)		2760						3.71	7.80-7.60	70.67	5.63	8.91	
<u>6a</u>	20	193-195	3300	2805	1800	1680	8.75	6.80, 6.70	3.90	3.70	7.80-6.90	68.44	5.70	10.65	
		(EtOH)	1715	2760								68.44	5.70	10.43	
<u>6b</u>	25	132-133	3250	2800	17 9 5	1680	7.90	6.73, 6.66	3.98	3.72	7.67 -7.4 8	60.50	4.70	9.41	
		(EtOH)	1750	2760								60.31	4.59	9.28	

Table 1 : Main experimental

data for compounds 5 and 6

^{*a*}Bohlmann bands. ^{*b*}Except <u>5d</u> (d_5 -pyridine, 200.16 MHz) and <u>6b</u> (d_6 -DMSO, 200.16 MHz).

 c Not detected.

Z = NH

Z = NCONHR

5

6

Table 2 : Main experimental

data for compounds <u>1</u>

Compd	Method	Yield/%	mp /°C (recryst.)	$I_{r} \in C = 0^{a}$		1 _{H-Nmr(}	Elemental analysis					
no.				Co.=0	C ₄ ,=0	H-8 and H-11	H-11b	OMe	R(m)	Found		
				2'		(2 s, 2H)	(m,1H)	(s)		C	H	N
<u>1a</u>	С	40	205~207	1820	1750	6.95, 6.74	4.25	3.76	7.50-7.30	70.58	5.88	6.86
1	A	73	(EtOH)					3.65		70,32	5.61	6.71
<u>1a</u> • H	B	61	218-220							62.09	5.62	6.30
			(EtOH-Et ₂ 0)							61.87	5.52	6.14
<u>1b</u> • H	C1 A	80	233-235	1815	1740	6.80	4.00	3.70	7.70-7.10	57.62	5.01	5.84
	В	65	(EtOH)							57.41	4.83	5.61
<u>1с</u> • Н	C1 A	85	227-229	1815	1740	6.85, 6.80	4.75	3.75	7.75-7.35	57.62	5.01	5.84
			(EtOH)							57.32	4.79	5.73
<u>1d</u> • H	C1 A	85	254-255	1825	1735	6.80, 6.70	4.80	3.80	8.30-7.40	65.52	5.46	5.66
			(iC ₃ H ₇ OH)							65.39	5.38	5.41
<u>1e</u>	C	42	169-171	1815	1740	6.85, 6.70	с	3.75	7.70-7.00	64.79	5.40	6.57
			(EtOH)							64.51	5.23	6.41

 $^{\alpha}$ All compounds studied as free bases showed Bohlmann bands at ca. 2760 and 2800 cm $^{-1}.$

^bExcept<u>la</u>(d₅-pyridine, 200.16 MHz).

^eSignal not detected.

 $(\frac{1}{2})-(2R^*, 11bS^*)$ -Ethyl 2-Hydroxy-9,10-dimethoxy-1,3,4,6,7,11b-hexahydrobenzo[a]quinolizine-2carboxylate Hydrochloride (9). Method A: A suspension of 8 (3.45 g, 10 mmol) in 100 ml of EtOH was saturated with dry HCl and refluxed for 2 h under continuous stream of dry HCl, then cooled and filtered. The filtrate obtained was evaporated to dryness and the residue was recrystallized from 2-propanol. Yield, 3.2 g (86 %); mp 212-214 °C (2-propanol). Anal. Calcd for C₁₈H₂₆N0₅Cl: C, 58.41; H, 6.99; N, 3.77. Found: C, 57.98; H, 6.81; N, 3.43. Ir (KBr): 3520, 3300 (0-H), 1730 (C=0) cm⁻¹. ¹H-Nmr (60 MHz, d₆-DMSO) δ : 6.90 and 6.70 (2 s, 2H, 8-H and 11-H), 4.30 (m, 1H, C_{11b}-H), 4.25 (q, J = 7 Hz, 2H, CH₂-CH₃), 3.75 (s, 6H, 2 OMe), 3.60-1.60 (m, 10H), 1.30 (t, J = 7Hz, 3H, CH₂-CH₃). Method B: A mixture of 0.3 g (0.87 mmol) of 8, 5 ml of anhidrous EtOH, and 0.15 ml of freshly distilled BF₃-Et₂O complex was refluxed for 2O h in a 110 °C bath, then cooled and filtered. The filtrate was diluted with 5 ml of water, basified with NaOH pellets and extracted with CHCl₃ (3 x 25 ml). The combined chloroform extracts were dried (Na₂SO₄) and evaporated. The residue was dissolved in 3 ml of 2-propanol and treated with dry HCl to precipitate 0.3 g (92 %) of 9.

([±])-(2*R**, 11b*S**)-3'-Aryl-9,10-dimethoxy-1,3,4,6,7,11b-hexahydrospiro[benzo∫α]quinolizin-2,5'oxazolidine]-2',4'-diones (1). Method A: A solution of 1.5 mmol of the adequate derivative of 5 in EtOH (5 ml) and 35 % hydrochloric acid (1 ml) was refluxed for 1 h. The cooled reaction mixture was evaporated to dryness and the residue was recrystallized as hydrochloride. Method B: A mixture of 1.5 mmol of 6, 5 ml EtOH and 1 ml of concentrated hydrochloric acid was refluxed for 1 h. The cooled reaction mixture was poured on ice (25 g), the N-arylurea thus precipitated was filtered off and the filtrate was evaporated and the residue was recrystallized as hydrochloride. Method C: A mixture of 0.8 g (2.4 mmol) of 9 (base) and 24 mmol of the adequate isocyanate 4 was heated at 60 °C for 16 h. The excess of 4 was distilled off and the residue was taken up with EtOH. After filtration of small amounts of N_*N^+ -diarylurea, the expected oxazolidinediones <u>1</u> precipitated. Data for compounds <u>1</u> can be found in Table 2. Compound <u>1a</u>, 13 C-nmr (50.32 MHz, d₅-pyridine) δ : 174.60 (C₄, s, W_{1/2} \approx 18 Hz), 153.82 (C₂₁, s), 148.59* and 148.30* (C₁₀ and C₉, 2 s), 131.88 $(C_{1"}, s)$, 129.29 $(C_{3"}$ and $C_{5"}, d, J = 160 Hz)$, 129.10 $(C_{4"}, d, J = 160 Hz)$, 128.89 (C_{11a}, s) , 127.32 (C_{7a} , s), 126.64 ($C_{2"}$ and $C_{6"}$, d, J = 160 Hz), 112.69 (C_{8} , d, J = 154 Hz), 109.61 (C_{11} , d, J = 154 Hz), 83.46 (C₂, s), 57.90 (C_{11b}, d, J = 133 Hz), 55.99** and 55.80** (C₁₃ and C₁₂, 2 q, J = 145 Hz), 51.43⁺ and 51.11⁺ (C₆ and C₄, 2 t; J = 133 Hz), 32.59 (C₃, t, J = 132 Hz), 29.61 (C₇, t, J = 127 Hz). The signals marked with *,**, and + could not be asigned with certainty.

ACKNOWLEDGEMENTS

We thank Prof. M. Martinez Moreno for providing the elemental analyses. Grateful acknowledgements

are made to the Dirección General de Investigación Científica y Técnica (project PA86-0317) and to Universidad Complutense (project UCP 025/87) for financial support. A research grant to JCM from the Plan Nacional de Formación de Personal Investigador is also appreciated.

REFERENCES

1. R. D. Clark, A. D. Michel, and R. L. Whiting, Progress Med. Chem., 1986, 23, 1.

2. E. S. Vizi, Medicinal Research Reviews, 1986, 6, 431.

- (a) J. L. Archibald, D. R. Beardsley, T. J. Ward, J. F. Watterfall, and J. F. White, <u>J. Med.</u> <u>Chem.</u>, 1983, <u>26</u>, 416; (b) J. M. Caroon, R. D. Clark, A. F. Kluge, C. H. Lee, and A. M. Strosberg, <u>J. Med. Chem.</u>, 1983, <u>26</u>, 1426; (c) S. J. Bill, A. Boniface, F. Haroun, R. P. Adams, N. Lattimer, and K. F. Rhodes, <u>Naunyn-Schmiedeberg's Arch. Pharmacol.</u>, 1986, <u>334</u>, 418.
- 4. R. M. Pinder, Drugs of the Future, 1985, 10, 841.
- H. Elliot, R. C. Jones, J. Vincent, C. B. Lawrie, and J. L. Reid, <u>Clin. Pharmacol. Ther.</u>, 1984, 36, 190.
- 6. J. C. Menéndez, G. G. Trigo, and M. M. Söllhuber, Heterocycles, 1986, 24, 1393.
- 7. N. Whittaker, J. Chem. Soc. (C), 1969, 85.
- 8. T. A. Patton, J. Org. Chem., 1967, 32, 383.
- 9. (a) I. N. Nazarov, A. V. Kamernitskii, and A. A. Akhrem, <u>Zh. Obshch. Khim.</u>, 1958, <u>28</u>, 1458, (<u>Chem. Abstr.</u>, 1959, 53, 1178); (b) I. N. Nazarov, A. A. Akhrem, and A. V. Kamernitskii, Zh. Obshch. Khim., 1955, 25, 1345 (Chem. Abstr., 1956, 50, 4950).
- 10. R. F. Rekker, H. Verleur, and W. Th. Nauta, Rec. Trav. Chim. Pays-Bas, 1951, 70, 5.
- 11. F. Bohlmann, Chem. Ber., 1958, 91, 2157.
- 12. M. Sugiura, N. Takao, R. Iwasa, and Y. Sasaki, Chem. Pharm. Bull., 1978, 26, 1901.
- 13. G. Van Binst and D. Tourwé, Heterocycles, 1973, 1, 257.
- 14. M. Sugiura, N. Takao, R. Iwasa, and Y. Sasaki, Chem. Pharm. Bull., 1979, 27, 3144.
- 15. J. C. Menéndez and M. M. Söllhuber, Heterocycles, 1987, 26, 3203.

Received, 26th September, 1988