ADDITION OF INDOLES TO N-ALKYLPYRIDINIUM SALTS. SYNTHESIS OF (DIHYDROPYRIDYL)INDOLES

Mercedes Alvarez, Rodolfo Lavilla, and Joan Bosch*

Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028-Barcelona, Spain

<u>Abstract</u> The addition of the sodium salt of several indole derivatives 1 to N-alkylpyridinium salts 2 having an electron-withdrawing substituent at the β -position is studied.

The addition of stabilized carbon nucleophiles to N-alkylpyridinium salts has proved to be a useful synthetic tool, especially in the field of indole alkaloids. Thus, we recently reported that interaction of the enolates derived from la or lb (LDA, THF, -78 to -30 °C, 2 h) with pyridinium salts 2a or 2b, followed by acidic cyclization of the resulting 1,4-dihydropyridine afforded the corresponding tetracycles 3a-c. These compounds possess four of the five rings of pentacyclic Staychnos alkaloids. 3

A different result was produced when the reaction conditions of the first step were modified. Thus, when the reaction of the ester $1a^4$ with pyridinium salt $2a^5$ was carried out in methanolic solution in the presence of sodium methoxide as the base, a^6 a yellow compound, which remained unchanged after acidic treatment, precipitated (60 % yield) from the reaction mixture. On the basis of its a^1 H-nmr spectrum and elemental analysis, it was tentatively assigned a^1 as the 3-(dihydropyridyl)indole a^1

However, further careful examination of the $^{13}\text{C}-\text{nmr}$ data of this dihydropyridine indicated that C-2 of the dihydropyridine ring was the site of attachment to the indole nucleus. Therefore, the correct structure of this 3-(dihydropyridyl)indole is that depicted in 5a.

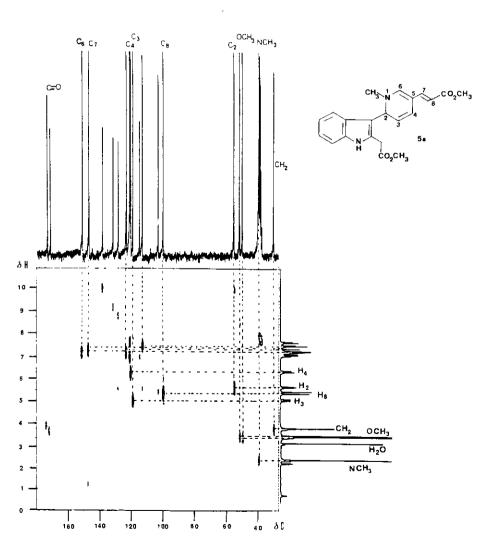


Figure 1. Two-dimensional nmr spectrum (HETCOR) of 5a (d_6 -DMSO)

The $^1\text{H}-^{13}\text{C}$ heterocorrelated nmr spectrum of $\mathbf{5a}$ as well as the signal assignment is showed in the Figure 1. The above data make evident the presence of a 2,3-disubstituted indole ring, a methoxycarbonylmethyl unit, and a doubly vinylogous urethane moiety. The nmr chemical shift (δ 55.2) of the sp 3 -hybridized dihydropyridine carbon is in agreement with that expected for a 2-(3-indolyl)-1,2-dihydropyridine and quite different from those observed in 4-(3-indolyl)-1,4-dihydropyridines.

Formation of 1,2-dihydropyridine 5a can be rationalized by considering a kinetic attack by C-3 of the indolyl anion at the α -position of the pyridinium salt followed by irreversible aromatization. To our knowledge there are no precedents of nucleophilic additions of indoles to N-alkylpyridinium salts.

The above reaction seems to be quite general and of preparative interest. Thus, treatment of indole (lc) and 2-methylindole (ld) with sodium methoxide and then with the pyridinium salt 2a afforded the corresponding 1,2-dihydropyridines $5b^9$ and $5c^{10}$ in 50 and 80 % yield, respectively. In a similar manner 2-methylindole (ld) reacted with other pyridinium salts ($2c^{11}$, $2d^{12}$) having an electron-withdrawing substituent (formyl or acetyl) at the 3-position to give the corresponding 3-(1,2-dihydro-2-pyridyl) indoles $5d^{10}$ and $5e^{10}$ (26 and 95 % yield, respectively), although in the first case the 3-(1,4-dihydro-4-pyridyl) indole $4d^{10}$ was also isolated in 13 % yield. The most noteworthy 1 H- and 13 C-nmr data of 3-(dihydropyridyl) indoles 4 and 5 are showed in Table 1.

As could be expected, two requisites for the success of the reaction are the presence of an electron-withdrawing substituent at the 3-position of the pyridinium salt and the absence of substituent at the indole nitrogen. According with this, 2-methylindole (1d) failed to react with pyridinium salt 2e under the usual reaction conditions and, similarly, the indole derivative 1b was unreactive to the pyridinium salt 2a.

Finally, condensation 6 of the sodium salt of 3-methylindole with pyridinium salt 2 a gave in 51% yield 1-(1,4-dihydro-4-pyridyl)indole 6 10 as a sole isolable product. 14 The structure of 6 6 was deduced from its nmr data (see Table 1), especially from the 1 H-nmr chemical shift (6 2.17) of the methyl group at the indole 3-position and the 13 C-nmr chemical shift (6 47.4) of the sp 3 -hybridized dihydropyridine carbon. Formation of 1,4-dihydropyridine 6 6 can be explained taking into account that, in this case, the attack of the indolyl anion, either by C-3 or by the nitrogen, to the pyridinium salt is reversible and, consequently, leads to the thermodynamically more stable product, i.e. a 1,4-dihydro-

— 240 —

Table 1. $^{\rm 1}{\rm H}^{-}$ and $^{\rm 13}{\rm C-Nmr}$ Data of (Dihydropyridyl)indoles 4-6 $^{\rm a-c}$

13 C-Nmr: H-2	н-2 С-2	H-3 C-3	H-4 C-4	H-5 C-5	H~b C-6	NCH ₃	$^{\rm R}_{ m 1}$	$^{ m R}_2$
P 9	6.48 d (1.2)		4.80 d (6.0)	4.95 dd (8.4, 6.0)	5.80 dm (8.4)	3.15 s	-	3.59 s
P4	6.85 d (1.6)		dt 1.2)	ddd , 0.8)	5.94 ddd (7.8, 1.6, 1.2)	3.31 s	2.45 s	8.90 br s
5 a e	6	5.09 dd (10.0, 3.6)	26.2 6.25 dt (10.0, 2.0)	109.1	7.09 ^f d (2.0)	40.7 2.64 s	3.62 ^g s, 3.92 s	3.57 ⁸ s, 5.39 d, 7.15 d (16.0) (16.0)
		116.9	118.4	101.7	148.2	0.04	170, 51.8 ⁸ , 31.2	168.2, 144.2, 98.7, 50.0 ⁸
£	5.46 dd (3.8, 1.2)	5.27 dd (10.0, 3.8)	6.29 dt (10.0, 1.2)	1 ! ! !	6.53 d (1.2)	2.77 s	-	3.73 s, 5.55 d, 7.25 d (15.0) (15.0)
	57.1	117.2	119.5	103.3	146.4	41.2		169.7, 144.3, 100.9, 50.8
5c	5.58 dd (3.8, 1.2)	5.18 dd (9.6, 3.8)	6.27 dt (9.6, 1.2)		6.57 d (1.2)	2.69 s	2.42 s	3.72 s, 5.53 d, 7.25 d (14.7) (14.7)
	54.7 ^e	116.4	118.0	101.1	147.6	39.4	10.5	167.6, 143.6, 97.8, 49.5
þ	5.67 dd (3.5, 1.9)	5.20 dd (10.2, 3.5)	6.58 ddd (10.2, 1.9, 0.6)	 - -	7.38 d (0.6)	2.88 s	2.46 s	8.72 br s
	57.9 ^h	116.0	118.9	108.6	155.6	41.0	11.3	182.3
5e	5.55 dd (3.6, 1.8)	5.01 dd (10.1, 3.6)	6.56 br d (10.1)	1	7.41 br s	2.77 s	2,42 s	2.20 s
	55.9	114.2	118.3	106.2	149.2	41.2	11.3	190.0, 23.8
6 ^{e, i}	6.95 d (2.6)		6.11 d (4.4)	4.94 dd (7.8, 4.4)	6.40 br d (7.8)	3.27 s	2.17 s	3.47 s, 5.24 d, 7.28 d (15.4) (15.4)
	145.7	105.4	47.4	109.5	130.4	8.04	9.6	167.2, 141.5, 102.9, 50.6

 a In ppm relative to TMS. Measured in CDCl $_{3}$ solution at 200 MHz (1 H-nmr) or 50.3 MHz (13 C-nmr). b Values in parentheses are coupling constants in Hz, c The 13 C-nmr assignments are in agreement with off-resonance spectra. d Data from the spectrum of a 4b+5b mixture. e Measured in d_6 -DMSO. 4 Signal at 6 6.68 in CDCl $_3$. 8 The assignment may be interchanged. $^{\rm h}$ Measured in CDCl $_3$ - d_6 -DMSO. $^{\rm i}$ R $_1$:CH $_3$: R $_2$:CH=CN-CO $_2$ CH $_3$

pyridine in which the γ -substituent is 3-methyl-1-indolyl rather than 3-methyl-3#-indol-3-yl. 15

The reaction here reported constitutes a useful synthetic entry to 3-(2-piperi-dyl) indoles, 16 a structural unit present in a large number of indole alkaloids. Thus, catalytic hydrogenation (Pd-C) of 1,2-dihydropyridine 5c afforded the corresponding piperidine 7 in nearly quantitative yield. 17

ACKNOWLEDGEMENT

This work was supported by the "Comisión Asesora de Investigación Científica y Tecnica", Spain (project number 0260/85) and by the "Comissió Interdepartamental de Recerca i Innovació Tecnològica", Generalitat de Catalunya (project number AR87/113).

REFERENCES AND NOTES

- 1. For a review, see: M.-L. Bennasar, R. Lavilla, M. Alvarez, and J. Bosch, Heterocycles, 1988, 27, 789.
- 2. M. Alvarez, R. Lavilla, and J. Bosch, Tetrahedron Lett., 1987, 28, 4457.
- 3. For a review, see: J. Bosch and J. Bonjoch, "Pentacyclic Staychnon Indole Alkaloids" in "Studies in Natural Products Chemistry", vol. 1, ed. by Atta-ur-Rahman, Elsevier, Amsterdam, p. 31.
- 4. Prepared by reaction of 2-indoleacetic acid with diazomethane. This acid was obtained according to the procedure reported by: A. R. Katritzky and K. Akutagawa, J. Am. Chem. Soc., 1986, 108, 6808.
- 5. C. Bessellèvre, R. Beulgelmans, and H.-P. Husson, <u>Tetrahedron Lett.</u>, 1976, 3447.
- 6. The general procedure was: i) generation of the sodium salt by treatment of the indole derivative ${\bf 1}$ with sodium methoxide in methanol at 0 °C for 30

- min, ii) addition of pyridinium salt ${\bf Z}$ at this temperature, and iii) stirring at room temperature for 6-16 h.
- (a) M. Ishikura and M. Terashima, <u>Heterocycles</u>, 1988, 27, 203; (b) E. Wenkert, E. C. Angell, J. Drexler, P. D. R. Moeller, J. St. Pyrek, Y.-J. Shi, M. Sultana, and Y. D. Vankar, <u>J. Org. Chem.</u>, 1986, 51, 2995.
- For nucleophilic addition of indoles to N-acylpyridinium salts see: (a) J. Bergman, J. Heterocyclic Chem., 1970, 7, 1071; (b) H. Deubel, D. Wolkenstein, H. Jokisch, T. Messerschmitt, S. Brodka, and H. von Dobeneck, Chem. Ber., 1971, 104, 705; (c) see also reference 7a.
- 9. Minor amounts of 1,4-dihydropyridine 4b were detected by $^1\mathrm{H-nmr}$ from the crude reaction mixture.
- 10. This compound gave elemental analysis consistent with the proposed structure.
- 11. L. Panizzon, Helv. Chim. Acta, 1941, 24, 24.
- 12. S. Ginsburg and I. B. Wilson, J. Am. Chem. Soc., 1957, 79, 481.
- 13. Formation of 1,4-dihydropyridine 4d probably reflects the higher reactivity of the γ -position of the pyridinium salt when the β -substituent is formyl.
- 14. Minor amounts of the corresponding 1,2-dihydropyridine were detected by nmr from the crude reaction mixture.
- 15. The reversibility of the nucleophilic attack was evident from the tendency of 1,4-dihydropyridine 6 to undergo fragmentation into the starting materials:
 i) all attempts to purify 6 by crystallization or column chromatography resulted in the formation of 3-methylindole and the pyridinium salt 2a, and ii) reduction of 6 with sodium borohydride in methanol gave 3-methylindole and a mixture of methyl (\mathcal{E}) -1-methyltetrahydropyridine-3-acrylates.
- 16. For the synthesis of 3-(2-piperidyl)indoles, see: (a) J. C. Powers, <u>J. Org. Chem.</u>, 1965, **30**, 2534; (b) E. Wenkert, K. G. Dave, and F. Haglid, <u>J. Am. Chem. Soc. 1965</u>, **87**, 5461; (c) E. Wenkert, K. G. Dave, F. Haglid, R. G. Lewis, T. Oishi, R. V. Stevens, and M. Terashima, <u>J. Org. Chem.</u>, 1968, **33**, 747; (d) T. Kametani and T. Suzuki, <u>J. Org. Chem.</u>, 1971, **36**, 1291; (e) M. Feliz, J. Bosch, D. Mauleón, M. Amat, and A. Domingo, <u>J. Org. Chem.</u>, 1982, **47**, 2435 and references cited therein.
- 17. 7: ${}^{1}\text{H-nmr}$ (CDCl $_{3}$, δ) 1.93 (s, 3 H, CH $_{3}$), 2.19 (dd, J=12, 3.2 Hz, 1H, H-6ax), 2.33 (s, 3 H, NCH $_{3}$), 2.87 (ddd, J=12, 1.8, and 1.8 Hz, 1 H, H-6eq), 3.03 (dd, J=9.2 and 2.9, 1 H, H-2ax), 3.68 (s, 3 H, OCH $_{3}$), 6.99-7.21 (m, 3 H, ArH), 7.79-7.86 (m, 1 H, ArH), 7.96 (s, 1 H, NH). The picrate 10 meited at 158-160 °C (acetone-ether).