A NEW ENANTIOSELECTIVE ROUTE TO (+)-QUEBRACHAMINE

Morio Asaoka^{*} and Hisashi Takei Department of Life Chemistry, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227, Japan

<u>Abstract</u> - Formal synthesis of (+)-quebrachamine was achieved using a new chiral building block 3-ethyl-5-trimethylsilyl-2-cyclohexenone.

Pictet-Spengler condensation has widely been used in the syntheses of isoquinoline and indole alkaloids, because of its general applicability. For the chiral synthesis of (+)-quebrachamine, the parent base of Aspidosperma indole alkaloid, based on Pictet-Spengler condensation, an efficient preparation of suitably functionalized C_0 unit with chiral quaternary carbon center is necessary.¹ Concerning with our recent effort for the construction of optically active quaternary carbon center starting from newly developed building block, 5trimethylsilyl-2-cyclohexenone,² a formal synthesis of (+)-quebrachamine via an efficient preparation of a new C_0 unit was carried out. The optically pure enone (S)-1 [[\$\vec{k}]_{D}^{22}+52.95°(c 1.08, CHCl_3), bp 102~103°C/5 mmHg, mp 25-28°C] was easily prepared from (R)-(-)-5-trimethylsilyl-2-cyclohexenone via reaction with ethyllithium followed by oxidation with PCC in 90% overall yield.² Hydrocyanation of 1 with Et_2AlCN^3 in THF at -40°C-rt gave (3R,5S)-2 as an exclusive diastereoisomer [75%, $[\alpha]_D^{27}$ -80.00°(c 1.00, CHCl₃), mp 66-66.5°C].⁴ Hydrolysis (conc. HCl, reflux 30 h) and esterification [(MeO)₃CH, MeOH, cat. TsOH, reflux 30 h, and then acetone-water, cat. TsOH, rt,0.5 h] of 2 gave slightly impure 3 in almost quantitative yield. Baeyer-Villiger oxidation of the crude 3 with m-CPBA (CH₂Cl₂-H₂O, Na₂HPO₄, at 0°C-rt) proceeded regiospecifically directed by TMS group⁵ to give 7-membered lactone 4 [80% from 2, $[\alpha]_D^{25}$ +56.36°(c 1.54, CHCl₂), mp 41-42°C]. Reduction of **4** with DIBAH in THF at -100°C gave hemiacetal derivative 5 in 87% yield which reacted with tryptamine in 90% acetic acid at reflux for 5 h to give $6a^6$ and $6b^6$ in 84% combined yield [(5S)-6a: 41%, 1.066, CHCl₃), mp 182-184°C; (55)-**6b**: 43%, [X]_D²²-133.3°(c 0.527, CHCl₃), mp 116-118.5°C, lit.^{1b} (5R)-6b: [Ø]_D+126.6°(c 1.160, CHCl₃), mp 113-116°C]. Both (5S)-6a and (5S)-6b are reported to give (+)-guebrachamine via amino alcohol 7a,b.^{1a,b} Thus the present synthesis provides a new efficient enantioselective route to (+)-guebrachamine.

(+)-quebrachamine

REFERENCES AND NOTES

1)a)S. Takano, K. Chiba, M. Yonaga, and K. Ogasawara, <u>J. Chem. Soc., Chem.</u> <u>Commun.</u>, 1980, 616; b)S. Takano, M. Yonaga, and K. Ogasawara, **ibid**., 1981, 1153; c)M. Node, H. Nagasawa, and K. Fuji, <u>J. Am. Chem. Soc</u>., 1987, **109**, 7901. 2)M. Asaoka, K. Takenouchi, and H. Takei, <u>Tetrahedron Lett</u>., 1988, **29**, 325. 3)M. Samson and M. Vandewalle, <u>Synth. Commun</u>., 1987, **8**, 231. 4)The absolute stereochemistry of **2** was tentatively assigned at this stage and it was confirmed by the transformation to lactam derivative **6**. 5)P. F. Hudrlik, A. M. Hudrlik, G. Nagendrappa, T. Yimenu, E. T. Zellers, and E. Chin, <u>J. Am. Chem. Soc</u>., 1980, **102**, 6894. 6)(5S)-**6a**: ¹H-nmr (CDCl₃): **§**=0.72(3H, t, J=7Hz), 1.20-3.40(10H, m), 4.33-5.25(3H, m, vinylic CH₂ and C-3 proton), 5.43-6.12(1H, m, vinylic CH), 6.84-7.47(4H, m, aromatic), **8**.63(1H, br s, NH); ir (KBr): 3270 (NH), 1660 cm⁻¹ (C=O); ms: 294(M⁺). (5S)-**6b**: ¹H-nmr (CDCl₃): **§**=0.97(3H, t, J=7Hz), 1.45-3.40(10H, m), 4.32-5.06(3H, m, vinylic CH₂ and C-3 proton), 5.20-5.93(1H, m, vinylic CH), 6.86-7.50(4H, m, aromatic), **8**.86(1H, br s, NH); ir (KBr): 3260 (NH), 1660 cm⁻¹ (C=O); ms: 294(M⁺).

Received, 17th October, 1988