RING TRANSFORMATION OF 1,2,6-THIADIAZINE 1,1-DIOXIDES INTO PYRAZOLES. A CONVENIENT SYNTHESIS OF N-ALKYLSULFAMIDES

José Elguero, Pilar Goya, and Ana Martínez Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain

<u>Abstract</u> -Conversion of thiadiazines into pyrazoles by the action of hydrazine represents a new example of ring transformation and provides a new entry into <u>N</u>-methylsulfamide. The latter has been used to prepare an <u>N</u>-methyl-3,5-diaminothiadiazine which cannot be obtained by direct alkylation.

For many years, there has been considerable interest in ring transformations caused by the action of nucleophiles on heterocyclic compounds¹. We now wish to report conversion of <u>N</u>-substituted 1,2,6-thiadiazine-1,1-dioxides into pyrazoles by reaction with hydrazine. When <u>N</u>-methylthiadiazines are used, this reaction has an additional interest since it provides a very convenient synthesis of <u>N</u>-methyl-sulfamide, a valuable key intermediate for many heterocycles containing the N-SO₂-N moiety². The general synthesis of N-alkylsulfamides involves reaction of sulfamide and alkylamines³ but with methylamine this procedure does not work. Reaction of 2,3,5-trimethyl-1,2,6-thiadiazine-1,1-dioxide (<u>la</u>) prepared according to Scheme 1⁴, with hydrazine in water afforded N-methylsulfamide (mp 63-65°C Lit.⁵ 63-64°C) and 3,5-dimethylpyrazole in good yields.

Scheme 1

The reaction proceeded in a very clean and smooth manner and the compounds were easily separated by crystallization. Other thiadiazines were used and the results are gathered in Table 1: 3,4,5-Trimethylpyrazole was obtained from 2,3,4,5-tetramethyl-1,2,6-thiadiazine 1,1-dioxide $\underline{1b}^{4}$, prepared in a similar way to $\underline{1a}$ whilst 2phenylethyl-3,5-dimethyl-1,2,6-thiadiazine-1,1-dioxide $\underline{1c}^{6}$ afforded <u>N</u>-phenylethylsulfamide and 3,5-dimethylpyrazole. This reaction was only performed in order to check the general scope of the method, since thiadiazine $\underline{1c}$ was synthesized from <u>N</u>phenylethylsulfamide and 2,4-pentanedione.

The probable mechanism involved is depicted in Scheme 2. A similar mechanism has been postulated for the conversion of pyrimidines into pyrazoles by the action of

Scheme 2

The structures of the pyrazoles were established by comparison with authentic samples⁸. Since no recent reports have dealt with <u>N</u>-methylsulfamide its nmr spectra have been recorded: ¹H nmr (300 MHz) (DMSO-d₆) δ : 6.46 (s, NH₂), 6.28 (d, J=3.4 Hz, NH), 2.50 (d, J=3.5 Hz, CH₃); (acetone-d₆) δ : 5.81 (s, NH₂), 5.50 (bs, NH), 2.68 (d, J=5.3 Hz, CH₃). ¹³C nmr (75 MHz) (DMSO-d₆) δ : 28.7 (g, J=137.7 Hz, CH₃). Finally, the synthetic usefulness of <u>N</u>-methylsulfamide is exemplified in the preparation of 2-methyl-3,5-diamino-1,2,6-thiadiazine-1,1-dioxide (<u>2</u>). The parent compound, 3,5-diamino-2<u>H</u>-1,2,6-thiadiazine derivatives¹⁰. Direct methylation of this compound afforded <u>C</u>-mono- and <u>C,N</u>-dimethyl derivatives¹¹ but the <u>N</u>-methyl derivative <u>2</u> could not be isolated. This compound can easily be obtained from <u>N</u>-methylsulfamide and malononitrile in dimethoxyethane¹² (Scheme 3).

Scheme 3

<u>General procedure for conversion of 1,2,6-thiadiazines 1,1-dioxides into</u> <u>pyrazoles</u>: An equimolar mixture of the thiadiazine and hydrazine hydrate in water (50-100 ml) was refluxed for 2h. After cooling, the precipitate (pyrazole) was collected by filtration and solvent evaporated under reduced pressure to afford the corresponding sulfamide.

ACKNOWLEDGEMENTS

The financial support from CICYT (project no. 87045) is gratefully acknowledged

REFERENCES

- 1. a) H.C. Van der Plas, "Ring Transformation of Heterocycles", Academic Press, New York 1973, vol. 2, p.166.
 b) A. Bajnati and M. Hubert-Habart, <u>Bull.Soc.Chim.Fr.</u>, 1988, 541.
- 2. V. Aran, P.Goya, and C. Ochoa, Adv. Heterocyclic Chem., 44, in press.
- 3. A.M. Paquin, <u>Angew.Chem</u>, 1948, <u>60A</u>, 316.
- 4. A.M. Roe and J.B. Harbridge, Chem.Ind. (London), 1965, 182.
- 5. R. Graf, Ger. Pat. DBP 947554 (1953), Chem.Abst.<u>53</u>, 1503 (1954).

- 6. <u>2-Phenylethyl-3,5-dimethyl-1,2,6-thiadiazine-1,1-dioxide</u> <u>1c.</u>- A solution of phenylethylsulfamide (2g, 0.01 mol) and 2,4-pentanedione (lg, 0.01 mol) in ethanol (50 ml) was saturated with hydrogen chloride. The reaction mixture was refluxed for 4 h, the solvent evaporated <u>in vacuo</u> and the residue recrystallized from methanol to give 2.3 g (88%) of <u>1c</u>, mp 185-186 C. Uv (MeOH) λ nm(ϵ): 217 (2800), 323 (4100); ir (nujol) vcm⁻¹:1320, 1180 (so₂); ¹H nmr (DMSO-d₆) δ : 7.4 (m, 5H, Ar-H), 5.9 (s, 1H, H-4), 4.1 (t, J=6 Hz, 2H, N-CH₂), 3.1 (t, J=6 Hz, 2H, CH₂), 2.2 (s, 3H, CH₃-3), 2.1 (s, 3H, CH₃-5). C₁₃H₁₆N₂O₂S requires: C, 59.09; H,6.06; N,10.60; S,12.12. Found: C, 59.31; H, 6.11; N, 10.64; S,12.36.
- 7. H.C. Van der Plas and H. Jongejan, Tetrahedron Lett., 1967, 44, 4385.
- Blguero, 'Comprehensive Heterocyclic Chemistry: Pyrazoles and Their Benzo Derivatives' vol. 5, ed. by A.R. Katrizky, Pergamon Press, Oxford, 1984 p. 167.
- 9. V.M. Cherkasov and T.A. Dashevskaya, <u>Ukr.Khim.Zh.</u>, 1970, <u>36</u>, 77, Chem.Abst. <u>72</u>, 132684x (1970).
- 10. a) G. Garcia-Muñoz, R. Madroñero, C. Ochoa, and M. Stud, <u>J.Heterocyclic Chem.</u>, 1976, <u>13</u>, 793.
 - b) P. Goya, C. Ochoa, J.A. Paez, and W. Pfleiderer, Chem.Scr., 1986, 26, 107.
- 11. P. Fernandez-Resa and M. Stud, <u>J.Heterocyclic Chem.</u>, 1981, <u>18</u>, 27.
- 12. <u>2-Methyl-3,5-diamino-1,2,6-thiadiazine-1,l-dioxide</u> <u>2</u>.- A solution of malononitrile (3g, 0.045 mol) and methylsulfamide (5g, 0.045 mol) in dimethoxy-ethane ¹³ (30 ml) was saturated with hydrogen chloride for 15 min. The solid was collected by filtration and dissolved in a saturated solution of sodium bicarbonate. After cooling, a crystalline white precipitate appeared which was recrystallized from ethanol to give 2 g (26%) of <u>2</u>, mp 175-177°C, uv (MeOH) $\lambda nm(\varepsilon)$: 205 (7500), 225 (6200), 285 (13950). Ir (nujol) νcm^{-1} : 1330, 1180 (so_2) . ¹H Nmr (DMSO-d₆) δ : 6.8 (s, 2H, NH₂), 6.5 (s, 2H, NH₂), 4.6 (s, 1H, H-4) 3.1 (s, 3H, CH₃). C₄H₈N₄o₂S requires: C, 27.27; H, 4.54; N, 31.81; S, 18.18. Found: C, 27.56; H, 4.61; N, 32.01; S, 18.01.
- 13. I. Alkorta, V. Aran, A.G. Bielsa, and M. Stud, <u>J.Chem.Soc.</u>, <u>Perkin Trans. I</u>, 1988, 1271.

Received, 20th October, 1988