REINVESTIGATION OF CYCLOADDITION OF NITROSOBENZENE TOWARDS 1,3-DIPHENYLISOBENZOFURANS

Cheng-Tung Lin^{*a}, Li-Wei Din^{a,1}, and Sue-Lein Wang^b a. Department of Chemistry, Tunghai University, Taichung, Taiwan 40098 R.O.C. b. Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30042 R.O.C.

<u>Abstract</u> — The title reaction gives rearrangement product of Nphenyl- α -phenyl- α -(o-benzoylphenyl)nitrones (8) rather than the earlier reported Diels-Alder cycloadduct 2. The molecular structure of 8a has been confirmed by a single crystal X-ray diffraction study.

Nitrosobenzene is one of the carbon-nitroso compounds known to be a reactive reaction.² Extensive the Diels-Alder studies heterodienophile in ٥f reveal that nitrosobenzene reacts regioselectively towards cycloaddition unsymmetrical dienes.³ Earlier, Mustafa reported that nitrosobenzene cyclized with 1.3-diphenylisobenzofuran (1a) to afford the corresponding Diels-Alder cycloadduct 2a. Several years ago, Kirby and his co-workers found that nitrosyl cyanate reacted with 1,3-diphenylisobenzofuran in a different manner. The major products were 1,2-dibenzoylbenzene and N-cyanoimine 3 in a ratio of 1 : 1. The outcome of the reaction was rationalized by oxygen atom transfer from the N-cyanonitrone 4 or N-cyanoxaziridine 5, to the transient intermediate, reactant, 1,3-diphenylisobenzofuran and/or by the recombination of unreacted reactant with cyanonitrene, a fragment cleavaged from the unstable Diels-Alder cycloadduct 6.

In connection with our studies on theDiels-Alder reaction of trichloronitrosomethane,⁶ we undertook the reinvestigation of the reaction of nitrosobenzene with 1,3-diphenylisobenzofurans. In this paper, we wish to describe the results that are different with the ones reported earlier by Mustafa⁴ and Kirby⁵.

Treatment of nitrosobenzene with 1a in ethyl alcohol as reported⁴ afforded a stable light yellow crystal in the yield of 64%. Its melting point, microanalysis and molecular ion of the mass spectrum were found to be identical with the data reported for cycloadduct 2.4 However, the ir spectrum shows a strong absorption band at 1665 cm⁻¹ which can only be accounted by a conjugated C=O stretching. The presence of carbonyl group is further established by the signal at 194.0 ppm in its ¹³C-nmr spectrum. Apparently, the structure of product was assigned incorrectively by earlier investigator.⁴ Due to the absence of critical evidence for distinguishing between two possible structures 7 and 8a, an X-ray structure analysis was taken. The crystal structure 7 reveals a notable C-N-O angle of 124.1° and an N-C(14) length of 1.311 Å (Tables 1 and 2) should exclude the consideration of N-phenyloxaziridine 7 which and unambiguously established the structure of product as nitrone 8a.⁸ A view of molecule 8a is given in Figure 1.

Under the similar conditions, the reaction of nitrosobenzene with 5,6dimethyl-1,3-diphenylisobenzofuran (1b) exhibited similar results to afford 8b.⁹ Attempts of isolation of the preliminary cycloadduct 2 by decreasing the reaction temperature to -78 °C were unsuccessful. Neither the reaction

Table 1. Bond angles data for nitrone 8a

O(1) - N - C(14)	124.1(3)	O(1)-N-C(21)	114.4(3)
C(14) - N - C(21)	121,3(3)	C(2)-C(1)-C(6)	118.5(4)
C(2) - C(1) - C(7)	122.5(4)	C(6)-C(1)-C(7)	119.0(4)
C(1) - C(2) - C(3)	120,7(5)	C(2)-C(3)-C(4)	120.1(5)
C(3) - C(4) - C(5)	120.1(5)	C(4) - C(5) - C(6)	120.0(5)
C(1) - C(6) - C(5)	120.6(5)	O(2)-C(7)-C(1)	121.1(4)
O(2) - C(7) - C(8)	119.0(3)	C(1)-C(7)-C(8)	119.8(3)
C(7) - C(8) - C(9)	119.6(4)	C(7) - C(8) - C(13)	120.7(3)
C(9) - C(8) - C(13)	119.3(4)	C(8) - C(9) - C(10)	121.2(4)
C(9) - C(10) - C(11)	120.0(5)	C(10) - C(11) - C(12)	119.7(5)
C(11) - C(12) - C(13)	121.4(4)	C(8)-C(13)-C(12)	118.4(4)
C(8) - C(13) - C(14)	123.3(3)	C(12)-C(13)-C(14)	118.2(3)
N-C(14)-C(13)	119.6(3)	N-C(14)-C(15)	120.6(3)
C(13) - C(14) - C(15)	119.8(3)	C(14)-C(15)-C(16)	119.7(4)
C(14) - C(15) - C(20)	120.8(3)	C(16)-C(15)-C(20)	119.4(4)
C(15)-C(16)-C(17)	120.1(4)	C(16)-C(17)-C(18)	120.3(5)
C(17) - C(18) - C(19)	119.8(5)	C(18)-C(19)-C(20)	121.4(5)
C(15)-C(20)-C(19)	119.0(4)	N-C(21)-C(22)	118.7(3)
N-C(21)-C(26)	119.5(3)	C(22)-C(21)-C(26)	121.8(4)
C(21)-C(22)-C(23)	118.7(4)	C(22)-C(23)-C(24)	119.9(4)
C(23) - C(24) - C(25)	121.0(5)	C(24) - C(25) - C(26)	120.0(4)
C(21)-C(26)-C(25)	118.3(4)		

temperature (-78 $^{\circ}$ C to 80 $^{\circ}$ C) nor solvents (methylene chloride, ether and benzene) have influence on the formation and the yield of nitrone 8.

Table 2. Bond lengths data (Å) for nitrone 8a

O(1)-N	1,299 (4)	O(2) - C(7)	1.218(5)
N-C(14)	1.311 (5)	N-C(21)	1.452 (5)
C(1) - C(2)	1.389 (6)	C(1) - C(6)	1.380(7)
C(1) - C(7)	1,494 (5)	C(2) - C(3)	1.382 (6)
C(3) - C(4)	1,371 (8)	C(4) - C(5)	1.370 (8)
C(5) - C(6)	1.390 (7)	C(7) - C(8)	1,497 (6)
C(8) - C(9)	1.383 (6)	C(8) - C(13)	1.402 (5)
C(9) - C(10)	1.382 (7)	C(10) - C(11)	1.370(7)
C(11) - C(12)	1.380 (7)	C(12) - C(13)	1.395 (6)
C(13) - C(14)	1.481 (5)	C(14) - C(15)	1.484 (5)
C(15)-C(16)	1.378 (6)	C(15) - C(20)	1.381(6)
C(16) - C(17)	1.385 (7)	C(17) - C(18)	1.359 (8)
C(18)-C(19)	1.356 (8)	C(19) - C(20)	1.386 (7)
C(21)-C(22)	1.377 (6)	C(21) - C(26)	1.368 (6)
C(22) - C(23)	1.381 (7)	C(23) - C(24)	1.363(7)
C(24) - C(25)	1.363 (7)	C(25) - C(26)	1.388(6)

4-Nitrosopyridine-N-oxide, known for its "ene" reaction with tetramethylethylene¹⁰ has not hitherto been employed as a dienophile. When 1,3-diphenylisobenzofuran was treated with 4-nitrosopyridine-N-oxide at 0 $^{\circ}$ C, the desired product 9 was isolated in the yield of 38 %. The structure of nitrone 9 was determined on the basis of spectroscopic analysis and high resolution mass spectrum.¹¹

Attention was then turned to the examination of oxygen atom transfer between nitrone 8 and isobenzofurans as suggested by the mechanism proposed by Kirby et al. for the reaction of nitrosyl cyanate with 1.5 Thus, refluxing the mixture of 1,3-diphenylisobenzofuran and nitrone 8a in benzene or toluene under oxygenfree nitrogen atmosphere for 24 hours did not give any products. All the reactants were chromatographically recovered. The nitrones 8 and 9 are relatively stable in the air for weeks, however, hydrolysis of 8a in aqueous acid solution produced 1,2-dibenzoylbenzene in quantitatively yield.

ACKNOWLEDGEMENT

This work was supported by grant from the National Science Council of the republic of China (NSC-76-0208-M029-03).

REFERENCES AND NOTES

1. Parts of this work were taken from the Master of Science thesis (chinese) of

L. W. Din, Tunghai University, 1988

- a). S. M. Weinreb and R. R. Staib, <u>Tetrahedron</u>, 1982, <u>38</u>, 3087; b) G. W. Kirby, <u>Chem. Soc. Rev.</u>, 1977, <u>6</u>, 1; c) J. Hamer and M. Ahmad, "Organic Chemistry--A series of Monographs", Vol. 8, Academic Press, New York, 1967, Chapter 12.
- a) G. Kresze and W. Kosbahn, <u>Tetrahedron</u>, 1971, <u>27</u>, 1931 b) G. Kresze and
 O. Korpiun, <u>Tetrahedron</u>, 1966, <u>22</u>, 2493
- 4. A. Mustafa, J. Chem. Soc., 1949, 256
- 5. P. Horsewood, G. W. Kirby, R. P. Sharma, and J. G. Sweeny, <u>J. Chem. Soc.</u>, Perkin 1, 1981, 1802
- 6. a) C. T. Lin and J. H. Chen, <u>J. Chin. Chem. Soc.</u>, 1987, <u>34</u>, 317; b) We have found that trichloronitrosomethane reacted with 1,3-diphenylisobenzo-furans to produce 1,2-dibenzoylbenzenes in high yield. The corresponding Diels-Alder cycloadducts were unable to be isolated. See also ref.1.
- 7. Crystallographic data for $C_{26}H_{19}NO_2$ (8a): orthorhombic, space group Pbca (No.61), a = 11.264(4) Å, b = 16.418(3) Å, c = 21.771(6) Å, V = 4026(2) Å³, Z = 8, FW = 377.4, D_c = 1.245 g/cm³, λ = 0.71073 Å. Of the 3414 reflections measured at room temperature on a Nicolet R3m/V diffractometer, 3023 were unique and 1470 reflections were considered observed (I > 3 σ (I)) after LP corrections. The structure was solved by direct methods and refined by full matrix least-squares refinement. R = 0.042, R_w = 0.043, GOF = 1.42. Highest peak on final difference map = 0.37 e/A³. All calculations were performed on a Micro VAX II based Nicolet SHELXTL PLUS system.
- 8. 8a (64 % yield): mp 227 °C (lit.⁴ 230 °C), ¹H-nmr (CDCl₃) 6 8.01 (d, 1 H, J = 8.1 Hz), 7.93 (d, 1 H, J = 8.4 Hz), 7.41 (m, 6 H), 7.19 (m, 11 H); ¹³C-nmr (CDCl₃) 6 194.0 (s), 147.0 (s), 146.7 (s), 139.8 (s), 136.2 (s), 135.2 (s), 134.5 (s), 132.4 (d), 131.3 (d), 130.7 (d), 130.6 (d), 130.3 (d), 128.8 (d), 128.7 (d), 128.6 (d, two peaks), 128.4 (d), 128.1 (d, two peaks), 124.3 (d); ir (KBr) 3030, 1665 cm⁻¹; ms (12 ev) m/z 377 (M⁺), 361 (M⁺-16), 270 (M⁺ C₆H₅NO, base peak); Anal. Calcd for C₂₆H₁₉NO₂: C, 82.74; H, 5.07; N, 3.71; Found: C, 82.80; H, 5.02; N, 3.73
- 9. 8b (89 %): mp 189 °C; ¹H-nmr (CDCl₃) δ 7.98 (d, 1 H, J = 7.2 Hz), 7.90 (d, 1 H, J = 7.7 Hz), 7.46 (m, 3 H), 7.15 (m, 11 H), 6.95 (s, 1 H), 2.25 (s, 3 H, CH₃), 2.20 (s, 3 H, CH₃); ¹³C-nmr (CDCl₃) δ 194.2 (s), 147.6 (s), 147.1 (s), 139.2 (s), 137.2 (s), 136.6 (s), 135.2 (s), 132.1 (d), 132.1 (s), 132.0

(d), 130.5 (d), 130.4 (d), 130.0 (d), 129.9 (s), 128.5 (d), 128.4 (d), 128.3 (d), 127.9 (d), 127.8 (d), 124.2 (d), 19.62 (q), 19.58 (q); ir (KBr) 3030, 1665 cm⁻¹; ms (12 ev) m/z 405 (M⁺), 389 (M⁺-16), 298 (M⁺-C₆H₅NO, base peak); Anal. Calcd for $C_{28}H_{23}NO_2$: C, 82.94; H, 5.72; N, 3.45; Found: C, 82.96; H, 5.76; N, 3.32

- 10. R. A. Abramovitch and E. M. Smith, <u>J. Heterocycl. Chem.</u>, 1975, <u>12</u>, 969
- 11. 9 (38 %): mp 198 °C; ¹H-nmr (CDCl₃) δ 8.05-7.85 (m, 4 H), 7.15-7.70 (m, 14 H); ¹³C-nmr (CDCl₃) δ 194.2 (s), 149.5 (s), 143.5 (s), 139.6 (d), 139.4 (s), 135.7 (s), 134.1 (s), 133.6 (s), 132.7 (d), 131.3 (d), 130.7 (d), 130.5 (d), 130.4 (d), 129.9 (d), 129.3 (d), 128.8 (d), 128.7 (d), 128.2 (d), 122.2 (d); ir (KBr) 3035, 1660 cm⁻¹; HRMS for C₂₅H₁₈N₂O₃ Calcd : 394.1317; Found: 384.1321

Received, 31st October, 1988