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Abstract - Total Syntheses of (4~.6~)-(+1-4-hydroxy-6-pentylvalero- 

lactone (6) and (6%)-4-1-massoialactone (71 have been achieved, 

starting from the yeast reduction product methyl (3Rl-3-hydroxy- 

hexenoate (11 . 

Our recent studies1 have shown that the (Rl-hydroxy-ester (1). available 

with E. 76% enantiomeric enrichment by baker's yeast reduction of the 
corresponding 6-keto-ester, can be used to prepare mevinic acid analogues (41 

in two ways, one option being conversion into the iodo-lactone (21, or the 
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corresponding eporide (31, followed by addition of a 6-substituent using radical 

coupling or modified Grignard reactions, respectively. Alternatively, the 

substituent can be incorporated by sequential ozonolysis and wittig coupling of 



protected derivatives of ester (1); the resulting unsaturated esters ( 5 )  can 

then be saponified and subjected to seleno-lactonisation leading to analogues 

(4) after removal of the seleno group and finally deprotection. As the 
1 

absolute configuration of hydroxy-ester (1) has been firmly established and 

because the relative stereochemistries of 4,6-disubstituted lactones (4) can be 

1 
determined with certainty from H nmr data, these methods should be 

particularly useful for the unambiguous synthesis of natural valerolactones and 

2-pyrones, in addition to the mevinic acids, and hence for the assignment of 

absolute stereochemistry to such compounds. Herein, we illustrate these 

features by the first asymmetric syntheses of a naturally occurring enantiomer 

of 4-hydroxy-6-pentyl~alerolactone (6) and of natural (-)-massoialactone (7). 

by using iodo- rather than seleno-lactonisation. 

4-Hydloxy-6-pentyl~alerolactone, [ o l y  +27.4' (c 11.7, CHC13), has been 

isolated from the fungus Cephalosporium recifei; while the spectral data 

exhibited by this compound support a trans relative stereochemistry, the 

absolute confiquration has not been estab~ished.~ By contrast, massoialactone 

(massoilactone) occurs in a number of plant sources including the bark oil of 

Cryptocarya massoiar3 cane mola~ses,~ in which it contributes to the flavour, 

and jasmine flowers5 as well as in the defence secretion of two species of 

formicin ants of the genus Camponotus. 6 

OUT syntheses began with protection of the initial yeast reduction product 

(1) as its tri-i~opropyl~ilyl ether; subsequent ozonolysis provided the 

aldehydo-ester (8). [,I: -6.7" (c 1.2, CHC12) (76% eel in excellent yield 

(Scheme). Wittig homologation using n-pentyltriphenylphosphorane followed by 

saponification then gave the unsaturated acid (9) contaminated with E. 6% of 
the corresponding (El-isomer. The crucial lactonisation step occurred smoothly 

when acid ( 9 )  was treated with three equivalents of iodine and an excess of 

Sodium bicarbonate in acetonitrile (OsC/3 h) ;' subsequent de-iodination using 

tri-n-butyltin hydride led to a 10:l mixture of valerolactones in favour of the 
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--isomer (101. Our previous studies1 revealed that increasing the steric 

bulk oE the 3-silyloxy group gave greater trans selectivity in kinetic 

iodolactonisations leading to lactones (2). This present example indicates that 

the presence of a 6-substituent in the lactonisation substrate, in this case 

acid 191, further enhances the trans selectivity, at least with *-unsaturated 

acids. 

  he major lactone (10) was separated by column chromatography and 

deprotected using 40% aq. HF in acetonitrile to give the hydroxy-lactone (61 

which exhibited spectral data identical with that reported for the natural 

material isolated from ~.recifei.~ Proton chemical shift and coupling constant 

data1" clearly established the trans relative stereochemistry; the synthetic 

sample showed [elZ: +29.4" (c 1.4, CHCIJ) corrected to +38.7' on the basis of 

76% ee in the starting ester (1). The natural material is reported to have 

[el2: 127.4' (c 11.7, CHC131Z and therefore has the (4n.65) ahsolute 

configuration shown in fornula (6). 

(i) i-R3SiU, imiduole. DMF, 20'C. 48 h (87%); (ii) (4 0 3 ,  CH2C12. -7SC. (b) Me2S. 

40'C. 40 h (91%); (iii) r y Z , ~ , , 6 ~ h , ~ ; ,  q-BuLi. THF. 2 0 ' ~ .  0.5 h (85%); (iv) KOH. McOH. ZO'C. 

16 h (86%); (v) I*. N.HCOS. CH3CN. O'C. 3 h (93%); (vi) pBuSSnH. THF. rcflux.3 h (E. 80%); 

(4 40% HP. CH3CN. O'C. 7 h (85%)i (viii) POW,, p y i d k .  61% 5 h (92%). 

Subsequent dehydration of lactone (6) using phosphorus oxychloride in 



3 6 
pyridine then gave, in excellent yield, natural (-I-massoialactone (71, [ a ]  

-82.4' (c 2.7, C H C ~ ~ )  corrected to -108.4' based on a 76% e e .  The natural 

material is reported to have [ali5 -91' (c 1, CHC13) ,3'6 or -99.4 (c 1.035, 

C H C ~ ~ )  ;5 the absolute configuration has been established as by ORD 

studies,' by a synthesis of the (2)-enantiomer ( [ , I ?  +82.5' (c 0.63, CHCl31 
3 

and by a preparation of the ( E l -  enantiomer -110.5' (c 2.5, CHC13)) from 

racemic methyl 5-hydroxy-2-decynoate by hplc separation of the (5)-a-naphthyl- 

ethyl carbarnate derivative.l0''' Other spectral and analytical data exhibited 

by OUT synthetic sample were identical to those reported far the natural 

material.3-b Using this methodology, it should thus be possible to both 

synthesis and to assign absolute stereochemistry to a range of related 

hydroxy-valerolactones and reduced pyrones. 
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