ENANTIOSELECTIVE TOTAL SYNTHESES OF **(4R,6&1-(+)-4-HYDROXY-6-** PENTYLVALEROLACTONE, **ex** Cephalosporium recifei, AND OF $(6R) - (-) -$ MASSOIALACTONE Frank Bennett and David W. Knight* Department of Chemistry, University of Nottingham, University Park, Nottingham, NG7 ZRD, U.K. Garry Fenton ~hzne-~oulenc, Dagenham, **Essex,** RMlO 7XS, U.K.

Abstract - Total syntheses of $(4R, 6R) - (+) - 4-hydroxy-6-pentylvalero$ lactone (6) and $(6R) - (-)$ -massoialactone (7) have been achieved, starting from the yeast reduction product methyl (3R)-3-hydroxyhexenoate (1).

Our recent studies¹ have shown that the (R) -hydroxy-ester (1) , available with ca. 76% enantiomeric enrichment by baker's yeast reduction of the corresponding 6-keto-ester, can be used to prepare mevinic acid analogues (41 in two ways, one option being conversion into the iodo-lactone (21, **or** the

corresponding eporide (31, followed by addition of a 6-substituent using radical coupling or modified Grignard reactions, respectively. Alternatively, the substituent can be incorporated by sequential ozonolysis and wittig coupling of

protected derivatives of ester (1); the resulting unsaturated esters (5) can then be saponified and subjected to seleno-lactonisation leading to analogues (4) after removal of the seleno group and finally deprotection. **As** the absolute configuration of hydroxy-ester (1) has been firmly established¹ and because the relative stereochemistries of 4,6-disubstituted lactones (4) can be determined with certainty from 1_H nmr data, these methods should be particularly useful for the unambiguous synthesis of natural valerolactones and 2-pyrones, in addition to the mevinic acids, and hence for the assignment of absolute stereochemistry to such compounds. Herein, we illustrate these features by the first asymmetric syntheses of a naturally occurring enantiomer of 4-hydroxy-6-pentylvalerolactone (6) and of natural (-)-massoialactone (7), by using iodo- rather than seleno-lactonisation.

4-Hydroxy-6-pentylvalerolactone, $\left[\alpha\right]_R^{25}$ +27.4° (c 11.7, CHC1₃), has been isolated from the fungus Cephalosporium recifei; while the spectral data exhibited by this compound support a **trans** relative stereochemistry, the absolute configuration has not been established.² By contrast, massoialactone (massoilactone) occurs in a number of plant sources including the bark oil of Cryptocarya massoia, 3 cane molasses, 4 in which it contributes to the flavour, and jasmine flowers⁵ as well as in the defence secretion of two species of formicin ants of the genus Camponotus. 6

OUT syntheses began with protection of the initial yeast reduction product (1) as its tri-isopropylsilyl ether; subsequent ozonolysis provided the aldehydo-ester (8) , $[\alpha] \frac{20}{n}$ -6.7° (c 1.2, CHCl₂) (76% ee) in excellent yield (Scheme). Wittig homologation using **n-pentyltriphenylphosphorane** followed by saponification then gave the unsaturated acid (9) contaminated with ca. 6% of the corresponding (\underline{E}) -isomer. The crucial lactonisation step occurred smoothly when acid (9) was treated with three equivalents of iodine and an excess of sodium bicarbonate in acetonitrile $(0^{\circ}C/3 h)$; subsequent de-iodination using tri-n-butyltin hydride led to a 10:l mixture of valerolactones in favour of the

trans-isomer (10). Our previous studies¹ revealed that increasing the steric bulk oE the 3-silyloxy group gave greater **trans** selectivity in kinetic iodolactonisations leading to lactones (2). This present example indicates that the presence of a 6-substituent in the lactonisation substrate, in this case acid (9), further enhances the trans selectivity, at least with cis-unsaturated acids.

 he major lactone (10) was separated by column chromatography and deprotected using 40% aq. HF in acetonitrile to give the hydroxy-lactone (61 which exhibited spectral data identical with that reported for the natural material isolated from $c.\mathtt{recifei.}^2$ Proton chemical shift and coupling constant data^{1,8} clearly established the trans relative stereochemistry; the synthetic sample showed $[\alpha]_{n}^{24}$ +29.4° (c 1.4, CHCl₂) corrected to +38.7° on the basis of 76% *ee* in the starting ester (1). The natural material is reported to have $\lceil \alpha \rceil \frac{25}{n}$ +27.4° (c 11.7, CHCl₃)² and therefore has the (4R,6R) absolute configuration shown in fornula (6).

Reagents: (i) **i-Pr₃SiCl**, imidazole, DMF, 20°C, 48 h (87%); (ii) (a) O_3 , CH₂Cl₂, -78°C, (b) Me₂S, 40°C, 40 h (91%); (iii) n-C₆H₁₁Ph₃Br, n-BuLi, THF, 20°C, 0.5 h (85%); (iv) KOH, McOH, 20°C, **16h** (86%); (v) **I₂**, NaHCO₃, CH₃CN, 0[°]C, 3 h (93%); (vi) pBu₃SnH, THF, reflux, 3 h (ca. 80%); (vii) 40% HF, CH₃CN, 0°C, 7 h (85%); (viii) POCl₃, pyridine, 65°C, 5 h (92%).

Scheme

Subsequent dehydration of lactone (6) using phosphorus oxychloride in

pyridine then gave, in excellent yield, natural $(-)$ -massoialactone (7), $[\alpha]_{\substack{n\\b}}^{36}$ -82.4 [°] (c 2.7, CHC1₃) corrected to -108.4 [°] based on a 76% ee. The natural material is reported to have $[\alpha]_D^{25}$ -91° (c 1, CHC1₃),^{3,6} or -99.4 (c 1.035, CHC1₂);⁵ the absolute configuration has been established as (R) by ORD studies, $\frac{9}{5}$ by a synthesis of the (S)-enantiomer ([a] $\frac{22}{5}$ +82.5° (c 0.63, CHCl₃)³ and by a preparation of the (R) - enantiomer $([a]_D -110.5^\circ$ (c 2.5, CHC1₃)) from racemic methyl 5-hydroxy-2-decynoate by hplc separation of the (R) -a-naphthylethyl carbamate derivative.^{10,11} Other spectral and analytical data exhibited by OUT synthetic sample **were** identical to those reported far the natural material.³⁻⁶ Using this methodology, it should thus be possible to both synthesis and to assign absolute stereochemistry to a range of related hydroxy-valerolactones and reduced pyrones.

ACKNOWLEDGEMENTS

We thank Rhone-Poulenc (Dagenham) and the SERC for financial support through the CASE Scheme.

REFERENCES

- 1. F. Bennett, G. Fenton, and D.W. Knight, Tetrahedron Lett., 1988, *9,* 4865.
- 2. R.F. Vesonder, F.H. Stodola, and W.K. Rohwedder, Can.J.Biochem.,1971,50,363.
- 3. K. Mori, Agric. Biol. Chem., 1976, 40, 1617, and references therein.
- 4. R. Hoff, Agric,Biol.Chem., 1976, 40, 1617, and references therein.
4. T. Hashizume, N. Kikuchi, Y. Sasaki, and I. Sakata, <u>Agri.Biol.Chem</u>., 1968, 32, 1306.
- 5. R. Kaiser and D. Lamparsky, Tetrahedron Lett., 1976, 1659.
- 6. G.W.K. Cavill, D.V. Clark, and F.B. Whitfield, Aust.J.Chem., 1968, 21, 2819.
- 7. P.A. Bartlett, D.P. Richardson, and J. Myerson, Tetrahedron, 1984, 40, 2317.
- 8. Lactone (6): δ_H (400 MHz) (CDC1₃) 0.90 (3H, t, J 6.9 Hz, CH₃CH₂), 1.20-1.74 (8H, m, $(CH_2)_{4}$), 1.73 (1H, ddd, J 14.5, 11.1, and 3.3 Hz, $5\alpha-H$), 1.98 (IN, dddd, J 14.5, 3.8. 3.0, and 1.6 HZ, 5B-HI, 2.63 (IH, ddd, J 17.7, 3.7, and 1.6 Hz, 3 β -H), 2.72 (1H, dd, J 17.7 and 4.9 Hz, 3 α -H), 2.81 (1H, br, OH), 4.37 (1H, narrow m, 4α -H), and 4.71 (1H, dddd, J 11.1, 7.8, 4.9, and 3.0 Hz, $6\beta - H$).
- 9. L. Crombie and **P.A.** Firth, J.Chem.Soc.(C), 1968, 2852.
- 10. W.H. Pirkle and P.E. Adams, J.Org.Chem., 1980, 45, 4117.
- 11. For syntheses of racemic massoialactone, see L. Crombie, J.Chem.Soc., 1955, 1007 and 2535; S. Abe and K. Sato, Bull.Chem.Soc.Jpn., 1956, 29, 88.

Received, 15th Nobember, 1988