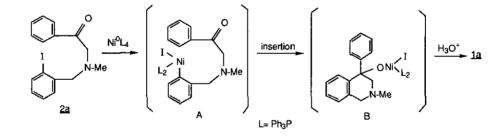

SYNTHESIS OF 2-METHYL-4-PHENYL-1,2,3,4-TETRAHYDROISOQUINOLIN-4-OL DERIVATIVES BY A NOVEL INSERTION REACTION OF ARYL-NICKEL COMPLEXES

Masaru Kihara,* Akinori Nakanishi, and Shigeru Kobayashi Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima 770, Japan

<u>Abstract</u> - 2-Methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-4-ol derivatives (<u>la-j</u>) as a new potentiator of noradrenaline were prepared by a novel intramolecular insertion of the aryl-nickel complexes of N-(2-halobenzyl)phenacylamines (2a-m).

The insertion of carbon monoxide into transition metal-carbon bonds has been extensively studied¹ from both a synthetic and a mechanistic point of view. However, there are only a few reports for the insertions of carbon dioxide² and formaldehyde,^{2,3} and for the intramolecular insertion of a formyl group,⁴ although of increasing interest.⁵ Recently, we have reported⁶ the novel synthesis of 2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-4-ol (<u>la</u>) (PI-OH) by the intramolecular insertion reaction of N-(2-iodobenzyl)phenacylamines (<u>2a,b</u>) with zerovalent nickel. In addition, the isoquinolin-4-ol (<u>la</u>) was found⁷ to be an ideal potentiator of the response to noradrenaline and its activity was due to inhibition of noradrenaline uptake. Nomifensin (<u>3a</u>), diclofensin (<u>3b</u>) and the 3',4'-dihydroxy-isoquinoline (<u>3c</u>), which are well known as antidepressants,⁸ have a different type of substituents on the phenyl groups at C-4. From these findings, the preparation of the 4-phenyl-substituted derivatives of <u>la</u> is interesting in a synthetic and a pharmacological point of view.

This paper describes the improved synthesis of <u>la</u> and its 2'-, 3'-, 4'-, and/or 5'-substituted derivatives (<u>lb-j</u>) by an intramolecular insertion of the arylnickel complexes of N-(2-halobenzyl)phenacylamines (<u>2a-m</u>) (Chart 1). Semmelhack and co-workers reported⁹ the synthesis of biaryls from aryl iodides using zerovalent nickel in good yields. In our previous paper,⁶ the isoquinolin-4-ol (<u>la</u>) was synthesized in yields of 18.7 and 23.8% from 2a,b, respectively, by


Cl	nart	1

Run	Starting material	NiCl ₂	(Ph3P)2NiCl2	Condit: temp.(°C)		solvent	Yield of <u>la</u> (%)
1	<u>2a</u>	l eq	·,	55-60	10	DMF	28.5
2	<u>2a</u>	2 eq		55-60	10	DMF	40.1
3	<u>2a</u>	2 eq		55-60	40	DMF	35.8
4	<u>2a</u>		2 eq	55-60	10	DMF	18.7 ^{a)}
5	<u>2a</u>	2 eq		55-60	10	DMA	14.1
6	<u>2a</u>	2 eq		75-80	10	DMA	9.1
7	<u>2b</u>	2 eq		55-60	10	DMF	21.2
8	<u>2b</u>		2 eq	55-60	10	DMF	23.8 ^{a)}
9	<u>2c</u>	0.1 eq		55-60	10	DMF	b)
10	<u>2c</u>	l eq		55-60	10	DMF	5.3
11	<u>2c</u>	2 eq		55-60	10	DMF	23.3
12	<u>2c</u>	2 eq		55-60	40	DMF	22.8
13	<u>2c</u>		2 eq	55-60	10	DMF	20.7
14	<u>2đ</u>	2 eq		55-60	10	DMF	14.5
15	<u>2d</u>		2 eq	55-60	10	DMF	11.3

Table 1 Synthesis of the isoquinolin-4-ol (la) from the phenacylamines (2a-d)

a) Ref. 6. b) Only an ambiguous mixture was obtained.

the method¹⁰ using zeroyalent nickel generated <u>in situ</u> from $(Ph_3P)_2NiCl_2$, zinc and Ph_3P in dimethylformamide (DMF). Recently, Colon and Kelsey reported¹¹ the synthesis of biaryls from aryl chlorides using zerovalent nickel generated from NiCl₂, zinc and Ph_3P in good yields. Thus, to improve the yield of <u>la</u>, iodo- and chlorophenacyl-amines (<u>2a</u>,<u>b</u>) and (<u>2c</u>,<u>d</u>) prepared from benzylamines (<u>4a</u>,<u>b</u>) and phenacyl bromides (<u>5a-c</u>) were treated with $(Ph_3P)_2NiCl_2$ or NiCl₂ under the different conditions, as shown in Table 1. The best yield of <u>la</u> was obtained from monoiodophenacylamine (2a) using NiCl₂ (run 2) and was a twice of those⁶ using $(Ph_3P)_2NiCl_2$ (runs 4 and 8). The longer reaction time (runs 3 and 12) and dimethylacetamide (DMA) as a solvent¹¹ (runs 5 and 6) did not improve the yield of <u>la</u>. The results of the reaction of <u>2c</u> using NiCl₂ (runs 9-11) indicated that this insertion was a stoichiometric reaction. Apparently, this cyclization did not need a halogen atom in the phenacyl benzene ring (runs 1-6 and 10-13). These results suggest the reaction mechanism as shown in Chart 2.

The phenacylamine (2a) is reacted with zerovalent nickel to form an aryl-nickel complex (A). Insertion of the carbonyl group² in A into the nickel-carbon bond gives an isoquinolinol complex (B), which is hydrolyzed¹² on treatment with 2% HCl to give la.

On the basis of these results, the monoiodophenacylamines (<u>2e-m</u>) as key intermediates for the synthesis of <u>lb-j</u> were selected and prepared in good yields by condensation¹³ of the benzylamine (<u>4a</u>) with phenacyl bromides (<u>5d-1</u>) (Table 4), of which <u>5d</u>, e, g, k were commercially available. The phenacyl bromides (<u>5c</u>, f, <u>h-j</u>, <u>1</u>) were easily obtained by bromination¹⁴ of the corresponding acetophenones with bromine and aluminium chloride as a catalyst. Bromination of 2', 4'-dimethoxyacetophenone gave <u>5h</u> (22.8%) and the aromatic substituted product (<u>5i</u>) (14.8%) of <u>5h</u>. The phenacylamines

Starting material No	Product No	Yield (%)	mp (°C)	Formula	Elemental analysis Calcd (Found) C H N
<u>2e</u>	<u>lb</u>	37.0	198-199.5	^C ₁₇ H ₁₉ NO ₂ ·HC1 ·1/3H ₂ O	65.48 6.68 4.49 (65.24 6.56 4.37)
<u>2f</u>	<u>1c</u>	21.2	120.5-121.5	C ₁₇ ^H 19 ^{NO} 2	75.92 7.11 4.95 (75.81 7.11 5.20)
<u>2g</u>	<u>1d</u>	23.8	oil	C ₁₈ H ₂₁ NO ₃	Ms(m/z)(M ⁺):299.1504 (299.1519)
<u>2h</u>	<u>le</u>	16.3	115.5-116.5	C ₁₈ H ₂₁ NO ₃	72.22 7.07 4.68 (72.06 7.15 4.64)
<u>2i</u>	<u>lf</u>	13.2	103-104.5	C ₁₈ H ₂₁ NO ₃	72.22 7.07 4.68 (71.95 7.06 4.51)
<u>2j</u>	<u>1g</u>	20.0	180-182.5	^C 18 ^H 20 ^{BrNO} 3 ·1/2H ₂ O	55.83 5.47 3.62 (55.96 5.19 3.42)
<u>2k</u>	<u>lh</u>	41.2	120-121	$C_{17}^{H_{16}F_{3}NO}$	66.44 5.25 4.56 (66.44 5.30 4.54)
21	<u>li</u>	22.5	230.5-233.5	C16 ^H 16 ^{ClNO·HCl}	61.95 5.52 4.52 (61.66 5.56 4.37)
<u>2m</u>	<u>lj</u>	29.5	oil	C ₁₆ ^H 15 ^{C1} 2 ^{NO}	Ms(m/z)(M ⁺):307.0528 (307.0497)

Table 2 Yields and physical data of the isoquinolin-4-ols $(\underline{1b}-\underline{j})$

Table 3 ¹H-Nmr spectral data of <u>lb-j</u>

No	¹ H-Nmr (CDCl ₃) δ
<u>1b</u>	3.80(3H,s), 3.39 and 3.23(each lH,d,J=15Hz), 2.96 and 2.60(each lH,d,J=12 Hz), 2.32(3H,s)
lc	7.35(2H,d,J=9Hz), 6.84(2H,d,J=9Hz), 3.81(3H,s), 3.55 and 3.31(each 1H,d,J=15Hz), 2.94 and 2.58(each 1H,d,J=12Hz), 2.37(3H,s)
<u>1d</u>	7.13(1H,d,J=2Hz), 6.87(1H,dd,J=8 and 2Hz), 6.81(1H,d,J=8Hz), 3.89 and 3.86 (each 3H,s), 3.83 and 3.45(each 1H,d,J=15Hz), 2.92 and 2.66(each 1H,d,J=12Hz), 2.47(3H,s)
le	6.74(1H,s), 3.60(3H,s), 3.48 and 3.31(each 1H,d,J=15Hz), 3.28(3H,s), 3.06 and 2.79(each 1H,d,J=12Hz), 2.36(3H,s)
<u>lf</u>	7.62(lH,d,J=9Hz), 6.50(lH,dd,J=9 and 2Hz), 6.37(lH,d,J=2Hz), 3.80(3H,s), 3.65 and 3.41(each lH,d,J=15Hz), 3.42(3H,s), 3.07 and 2.79(each lH,d,J= $12Hz$), 2.39(3H,s)
<u>lg</u>	8.04(1H,s), 6.38(1H,s), 3.88(3H,s), 3.57 and 3.32(each 1H,d,J=15Hz), 3.38 (3H,s), 2.99 and 2.74(each 1H,d,J=12Hz), 2.38(3H,s)
<u>lh</u>	7.83(lH,s), 7.54(lH,d,J=7Hz), 7.43(lH,d,J=7Hz), 3.59 and 3.38(each lH,d, J=15Hz), 2.93 and 2.63(each lH,d,J=12Hz), 2.41(3H,s)
<u>li</u>	7.39(2H,d,J=9Hz), 7.29(2H,d,J=9Hz), 3.73 and 3.41(each 1H,d,J=15Hz), 2.90 and 2.62(each 1H,d,J=12Hz), 2.43(3H,s)
<u>lj</u>	7.63(lH,d,J=2Hz), 7.38(lH,d,J=8Hz), 3.64 and 3.39(each lH,d,J=15Hz), 2.89 and 2.60(each lH,d,J=12Hz), 2.41(3H,s)

 $(\underline{2e}-\underline{m})$ thus obtained were treated with zerovalent nickel generated from NiCl₂-Zn-Ph₃P system in DMF for 10 h. The isoquinolin-4-ols (<u>lb-j</u>) were obtained in 20-40% yields (Table 2) together with an ambiguous material, but without the starting material. The structures of <u>lb-j</u> were determined by their physical data, and mass and ^lH-nmr spectral data (Tables 2 and 3). The ^lH-nmr spectra of <u>lb-j</u> showed the characteristic AB-type doublets (J=15 and 12Hz) of the methylene protons (δ 3.30-3.84 and δ 2.60-3.07) at C-1 and C-3, respectively.

As described above, our novel insertion reaction of the aryl-nickel complexes of N-(2-iodobenzyl) phenacylamines, although of a moderate yield, offers a more convenient method for the preparation of biologically active 4-phenyltetrahydro-isoquinolin-4-ols than the other ones¹⁵ reported to date.

EXPERIMENTAL

All melting points are given as uncorrected values. Infrared (ir) spectra were taken with a Perkin-Elmer 1720 infrared fourier transform spectrophotometer and are given in cm⁻¹. High-resolution mass (ms) spectra were recorded on a JEOL JMS-D 300 spectrometer. Proton nuclear magnetic resonance (¹H-nmr) spectra were recorded on a JEOL JNM-PS 100 or a JEOL JNM-FX 200 spectrometer in CDCl₃ with tetramethylsilane as a standard and are given in δ values.

Bromination of 2',4'-dimethoxyacetophenone

To a solution of 2',4'-dimethoxyacetophenone (10.81 g, 64.3 mmol) in dry ether (20 ml) was added AlCl₃ (50 mg) and then bromine (9.60 g, 60.1 mmol) was added dropwise under ice-cooling with stirring during 16 min to give a pale yellow oil. The reaction mixture was extracted with $CHCl_3$ (50 ml) and the extract was washed with a saturated solution of $Na_2S_2O_3$ in H_2O , 2% Na_2CO_3 and brine, successively. The $CHCl_3$ solution was dried over $MgSO_4$ and evaporated to give crude crystals (10.65 g), which were subjected to flash chromatography on SiO_2 in $CHCl_3$ -benzene (1:1). The first fraction gave pale violet needles (5.70 g) and the socond fraction afforded the starting material (1.21 g). The first fraction was further subjected to flash chromatography on SiO_2 in ethyl acetate-hexane (1:1) to give two fractions. The first fraction gave the monobromide (<u>2h</u>) as colorless needles (3.02g, 22.8%), mp 99-102°C (from ethyl acetate-hexane) (lit.¹⁶ mp 102-104°C). Ir(KBr): 1665. ¹H-Nmr: 7.90(1H,d,J=9Hz), 6.57(1H,dd,J=9 and 2Hz), 6.47(1H,d,J=2Hz), 4.57(2H,s), 3.93 and 3.87(each 3H,s). Anal.Calcd for $C_{10}H_{11}BrO_3$: C,46.19; H,4.28. Found: C,46.36; H,4.22.

The socond fraction afforded the dibromide (<u>5i</u>) as colorless needles (1.97 g, 14.8%), mp 155-157.5°C (from ethyl acetate-hexane). Ir(KBr): 1665. ¹H-Nmr: 8.08(1H, s), 6.44(1H,d,J=2Hz), 4.52(2H,s), 3.99 and 3.98(each 3H,s). Anal.Calcd for $C_{10}H_{10}Br_2O_3$: C,35.54; H,2.98. Found: C,35.62; H,2.97.

3,4-Dichlorophenacyl Bromide (51)

A solution of 3',4'-dichloroacetophenone (10.02g, 59.6 mmol) in ether-CHCl₃ (1:1) (40 ml) was treated with bromine (9.33 g, 58.4 mmol) and AlCl₃ (50 mg) in the same way as above. The crude oil (12.8 g) obtained was purified by flash chromatography on SiO₂ in benzene to afford <u>51</u> as pale yellow needles (10.13 g, 71.3%), mp 55-57°C (from benzene-hexane) (lit.¹⁷ mp 54-56.5°C). Ir(KBr): 1695. ¹H-Nmr: 8.07(1H,d,J=2 Hz), 7.82(1H,dd,J=8 and 2Hz), 7.59(1H,d,J=8Hz), 4.38(2H,s). Anal.Calcd for $C_{g}H_{5}BrCl_{2}O$: C,35.86; H,1.88. Found: C,35.66; H,1.95.

The phenacyl bromides $(\underline{5c}, \underline{f}, \underline{j})$ were prepared in the same way as $\underline{51}$.

2-Chlorophenacyl bromide (5c)

Colorless oil (58.8%) (lit.¹⁸ bp 97.5-98°C/1 mmHg). Ir(KBr): 1698. ¹H-Nmr: 7.57(1H, m), 7.47-7.32(3H,m), 4.52(2H,s). Ms(m/z)(M⁺): Calcd for C₈H₆BrClO: 321.9335. Found: 321.9290.

3,4-Dimethoxyphenacyl bromide (5f)

Colorless needles (43.6%), mp 78.5-80°C (from benzene-hexane) (lit.¹⁹ mp 81°C). Ir(KBr): 1671. ¹H-Nmr: 7.86(1H,dd,J=8 and 2Hz), 7.79(1H,s), 7.15(1H,d,J=8Hz), 4.71 (2H,s), 3.92 and 3.90(each 3H,s). Anal. Calcd for C₁₀H₁₁BrO₃: C,46.36; H,4.28. Found: C,46.54; H,4.25.

3-Trifluoromethylphenacyl bromide (5j)

Colorless oil (29.2%) (lit.²⁰ mp 22°C). Ir(KBr): 1703. ¹H-Nmr: 8.25(lH,s), 8.18 (lH,d,J=8Hz), 4.46(2H,s). Ms(m/z)(M⁺): Calcd for C₉H₆BrFO: 265.9531. Found: 265.9552.

2-Chloro-N-methylbenzylamine (4b)

The benzylamine (<u>4b</u>) was prepared by the method reported by Borch and co-workers.²¹ To a solution of 30% CH_3NH_2 -MeOH (51.04 g, 493 mmol) and absolute MeOH (110 ml) was added 5N HCl-MeOH (32 ml), followed by 2-chlorobenzaldehyde (11.62 g, 82.7 mmol) and NaBH₃CN (3.14 g, 50.0 mmol). The mixture was stirred at room temperature for 72 h and filtered. The filtrate was made acidic (pH 2) with conc. HCl (15 ml) and concentrated to the volume of one fifth. H_2O (20 ml) was added and the solution was washed with ether. The aqueous layer was made basic (pH 10) with solid KOH and extracted with ether. The extract was dried over MgSO₄ and evaporated to give <u>4b</u>

Table 4	I TETU		-	
Compound	Yield (%)	Formula	Ms $(m/z)(M^+)$ Calcd (Found)	¹ H-Nmr (CDCl ₃) δ
<u>2c</u>	59.4	C16H16C1NO	273.0918 (273.0902)	7.96(2H,dd,J=8 and 2Hz),3.88(2H,s),3.82(2H, s),2.40(3H,s)
2d	45.0	$C_{16}H_{15}C_{2}NO$	307.0528	3.83(2H,s), 3.81(2H,s), 2.40(3H,s)
<u>2e</u>	71.6	C ₁₇ H ₁₈ INO ₂	395.0381 (395.0361)	7.94(lH,ddd,J=8,3 and lHz),7.83(lH,dd,J=8 and lHz),7.33(lH,dd,J=8 and 8Hz),6.95(lH, dd,J=8,2 and lHz),3.91(2H,s),3.84(3H,s),
<u>2f</u>	61.1	C ₁₇ H ₁₈ INO ₂	395.0384 (395.0400)	3.77(2H,s),2.44(3H,s) 7.97(2H,d,J=9Hz),7.84(1H,dd,J=8 and 1Hz), 7.46(1H,dd,J=8 and 2Hz),7.31(1H,ddd,J=8,8, and 1Hz),6.90(2H,d,J=9Hz),3.86(3H,s),3.82 (2H,s),3.74(2H,s),2.40(3H,s)
<u>2g</u>	93.5	$C_{18}H_{20}INO_{3}$	425.0487 (425.0470)	7.90(1H,dd,J=8 and 2Hz),3.92(3H,s),3.90(3H, s),3.88(2H,s),3.78(2H,s),2.42(3H,s)
<u>2h</u>	66.6	$C_{18}H_{20}INO_{3}$	425.0490 (425.0500)	7.82(1H,dd,J=8 and 2Hz),7.44(1H,ddd,J=8,8, and 2Hz),3.99(2H,s),3.82(8H,s),2.47(3H,s)
<u>2i</u>	80.1	C ₁₈ H ₂₀ INO ₃	425.0487 (425.0449)	7.84 (lH,d,J=9Hz),7.81 (lH,dd,J=8 and lHz), 7.49 (lH,dd,J=8 and lHz),7.30 (lH,ddd,J=8,8, and lHz),6.93 (lH,ddd,J=8,8 and lHz),6.54 (lH,dd,J=9 and 2Hz),6.43 (lH,d,J=2Hz),3.85 5H,s),3.83 (5H,s),2.45 (3H,s)
<u>2j</u>	73.1	C ₁₈ H ₁₉ Brino ₃	502.9615 (502.9605)	7.98(1H,s),7.81(1H,dd,J=8 and 1Hz),6.40(1H, s),3.96(2H,s),3.84(6H,s),3.80(2H,s),2.44 3H,s)
<u>2k</u>	67.2	C ₁₇ H ₁₅ F ₃ INO	414.0168 (414.0244)	8.30(1H,d,J=8Hz),8.22(1H,s),7.83(1H,dd,J= 8 and 1Hz),7.56(1H,dd,J=8 and 8Hz),7.42(1H, dd,J=8 and 2Hz),7.32(1H,ddd,J=8,8 and 2Hz), 6.96(1H,ddd,J=8,2 and 2Hz),3.85(2H,s),3.74 2H,s),2.41(3H,s)
<u>21</u>	70.1	C ₁₆ H ₁₅ Clino	398.9886 (398.9819)	7.91 (2H,d,J=9Hz),7.85(1H,dd,J=8 and 1Hz), 7.39 (2H,d,J=9Hz),7.30(1H,dd,J=8 and 1Hz), 6.97 (1H,ddd,J=8,8 and 1Hz),3.81(3H,s),3.73 (2H,s),2.40(3H,s)
<u>2m</u>	74.0	C ₁₆ H ₁₄ Cl ₂ INO	432.9497 (432.9464)	8.04(1H,d,J=2Hz),7.85(1H,dd,J=8 and 2Hz), 7.78(1H,dd,J=8 and 1Hz),7.48(1H,d,J=8Hz), 3.75(2H,s),3.70(2H,s),2.38(3H,s)

Table 4 Yields, mass and ¹H-nmr spectral data of 2c-m^{a)}

a) Oily product.

as an oil (11.90 g). This was converted to the hydrochloride as colorless needles (5.20 g, 34.2%), mp 133-135°C (from MeOH-acetone). ¹H-Nmr (free base): 7.39-7.14 (4H,m), 3.84(2H,s), 2.45(3H,s). Anal. Calcd for $C_8H_{10}ClN\cdotHCl$: C,50.02; H,5.77; N,7.29. Found: C,50.21; H,5.87; N,7.20.

3,4-Dimethoxy-N-(2-iodobenzy1)-N-methylphenacylamine (2g)

A solution of $\underline{4a}^6$ (982 mg, 3.98 mmol) in dioxane (10 ml) was added to a solution of $\underline{5f}$ (515 mg, 1.99 mmol) in dioxane (10 ml) and stirred at room temperature for 5 h. The precipitates formed were filtered and the filtrate was evaporated <u>in vacuo</u> to give a pale yellow oil. This crude product was purified by flash chromatography on SiO₂ in CHCl₃-benzene (1:1) to give $\underline{2g}$ as a pale yellow oil (792 mg, 93.5%) (Table 4). The phenacylamines ($\underline{2c-f}$ and $\underline{2h-m}$) were prepared in the same way as $\underline{2g}$ as shown in Table 4.

Reaction of the phenacylamine (2c) with (Ph3P)_NiC1_-Zn-Ph3P system

 Ph_3P (904 mg, 3.4 mmol), $(Ph_3P)_2NiCl_2$ (1124 mg, 1.7 mmol), Zn (115 mg, 1.7 mmol) and KI (286 mg, 1.7 mmol) were placed in a two-necked flask. The flask was evacuated and filled with N_2 . Dry oxygen-free DMF (15 ml) was added through a syringe. The mixture was stirred at 55°C for 5 min. A solution of <u>2c</u> (314 mg, 0.86 mmol) in dry oxygen-free DMF (1.5 ml) was added, and the mixture was stirred at 55-60°C for 10 h. Then, 2% HCl (20 ml) was added and the aqueous layer was washed with ether. The aqueous layer was made basic with solid Na_2CO_3 and extracted with CHCl₃. The extract was washed with H_2O , dried over MgSO₄ and evaporated to give a crude product (226 mg). This was subjected to preparative tlc (PLC) on Al_2O_3 in benzeneethyl acetate (1:1) to give <u>1a</u> as colorless plates (54 mg, 20.7%), mp 105-106°C (from MeOH). This was identical with an authentic <u>1a</u>⁶ by comparison of the ¹H-nmr spectra and amixed melting point test.

The phenacylamine (2d) was treated with $(Ph_3P)_2NiCl_2-Zn-Ph_3P$ system in the same way as 2c (Table 1).

Reaction of the phenacylamine (2a) with NiCl2-Zn-Ph3P system

The phenacylamine (<u>2a</u>) (531 mg, 1.5 mmol) in dry oxygen-free DMF (3 ml) was treated with Ph_3P (1582 mg, 6.0 mmol), NiCl₂ (382 mg, 3.0 mmol) and Zn (197 mg, 3.3 mmol) in dry oxygen-free DMF (30 ml) in the same way as above to give a pale brown oil (217 mg). This crude product was purified by PLC on Al_2O_3 in benzene-ethyl acetate (1:1) and recrystallized from MeOH to give <u>la</u> as colorless plates (139 mg, 40.1%), mp 105.5-106°C. This was identical with the sample obtained above by comparison of the ¹H-nmr spectra and a mixed melting point test.

The phenacylamines $(\underline{2e}-\underline{m})$ were treated with NiCl₂-Zn-Ph₃P in the same way as above to give the isoquinolin-4-ols $(\underline{1b}-\underline{j})$. Yields, and physical and spectral data are summarized in Tables 2 and 3.

REFERENCES

- C.P.Casey and L.M.Baltusis, <u>J.Am.Chem.Soc.</u>, 1982, <u>104</u>, 6347; J.Berke and R.Hoffmann, <u>ibid.</u>, 1978, <u>100</u>, 7224; <u>M.Mori</u>, <u>Yakugaku 2asshi</u>, 1981, <u>101</u>, 383.
 H.Carmona, P.Palma, M.Paneque, and M.L.Poveda, <u>J.Am.Chem.Soc.</u>, 1986, <u>108</u>, 6424.
 W.R.Tikkanen and J.L.Petterson, <u>Organometallics</u>, 1984, <u>3</u>, 1651; E.A.Maatta and
- T.J.Marks, <u>J.Am.Chem.Soc.</u>, 1981, <u>103</u>, 3576; P.Leoni and M.Pasquali, <u>J.Organomet.Chem.</u>, 1983, <u>255</u>, C31.

4. F.M.Semmelhack and E.S.C.Wu, J.Am.Chem.Soc., 1976, 98, 3384; F.M.Semmelhack and

S.J.Brickner, ibid., 1981, 103, 3945.

- 5. D.J.Darensbourg, P.K.Hankel, C.G.Bauch, M.Pala, D.Simmons, and J.N.White, J.Am.Chem.Soc., 1985, 107, 7463; D.J.Darensbourg and G.Grotsch, <u>ibid.</u>, 1985, 107, 7473.
- 6. M.Kihara, Y.Ishida, and S.Kobayashi, J.Chem.Research(S), 1987, 236.
- Y.Ishida, N.Koga, T.Nanbu, M.Kihara, and S.Kobayashí, <u>Br.J.Pharmacol.</u>, 1988, 94, 19.
- P.A.Dandridge, C,Kaiser, M.Brenner, D.Gaitanopoulos, L.D.Davis, R.L.Webb, J.J.Foley, and H.M.Sarau, J.Med.Chem., 1984, 27, 28; B.E.Maryanoff, D.F.MaComsey, M.J.Costanzo, P.E.Setler, J.F.Gardocki, R.P.Shank, and C.R.Schneider, <u>ibid.</u>, 1984, 27, 946.
- 9. M.F.Semmelhack, P.M.Helquist, L.D.Jones, L.Keller, L.Mendelson, L.S.Lyono, J.G.Smith and R.D.Stauffer, <u>J.Am.Chem.Soc.</u>, 1981, 103, 6460 and references cited theirin.
- 10. A.S.Kende, L.S.Liebeskind, and D.M.Braitsch, Tetrahedron Lett., 1975, 3375.
- 11. I.Colon and D.R.Kelsey, J.Org.Chem., 1986, 51, 2627.
- 12. M.Mori and Y.Ban, Tetrahedron Lett., 1976, 1807.
- 13. J.J.Barlow, B.G.Main, and H.M.Snow, J.Med.Chem., 1981, 24, 315.
- R.M.Cowper and L.H.Davidson, "Organic Syntheses", Coll. Vol.II, ed. by A.H.Blatt, John Wiley and Sons, Inc., New York, 1943, p. 480.
- 15. I.G.Hinton and F.G.Mann, <u>J.Chem.Soc.</u>, 1959, 599; D.V.Gardner, U.S. Pat. 4,113,869, 1978; B.Leseche, J.Gilbert and C.Viel, <u>J.Heterocyclic Chem.</u>, 1981, 18, 143; G.Grethe, J.L.Lee, M.Uskokovic, and A.Brossi, <u>J.Org.Chem.</u>, 1968, 33, 491 and 494; S.N.Quessy, L.R.Williams, and V.G.Baddeley, <u>Synth.Commun.</u>, 1978, 8, 45.
- 16. A.Sonn, Chem.Ber., 1919, 52, 923.
- 17. R.Fuchs and L.A.VanderWerf, J.Am.Chem.Soc., 1956, 78, 5612.
- R.E.Lutz, R.K.Allison, G.Ashburn, P.S.Bailey, M.T.Clark, J.F.Codington, A.J.Martin, and K.C.Nicodemus, <u>J.Org.Chem.</u>, 1947, 12, 617.
- 19. J.N.Jacob, D.E.Nichols, J.D.Kholi, and D.Glock, J.Med.Chem., 1981, 24, 1013.
- 20. R.M.Laird and R.E.Parker, J.Am.Chem.Soc., 1961, 83, 4277.
- 21. R.E.Borch, M.D.Bernstein, and H.D.Durst, <u>J.Am.Chem.Soc.</u>, 1971, 93, 2897.

Received, 18th January, 1989