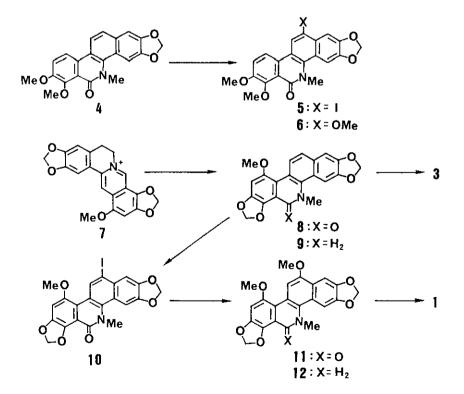

A NEW AND CONVENIENT SYNTHESIS OF MACARPINE AND DIHYDROMACARPINE FROM OXYCHELIRUBINE

Miyoji Hanaoka,^{*} Won Jea Cho, Shuji Yoshida, Tsukasa Fueki, and Chisato Mukai Faculty of Pharmaceutical Sciences, Kanazawa University Takara-machi, Kanazawa 920, Japan

Abstract — A novel and biomimetic conversion of oxychelirubine (8) to macarpine (1) and dihydromacarpine (12) was achieved by regioselective iodination and subsequent methoxylation.


Macarpine (1), isolated from <u>Macleaya cordata</u>^{1,2} and several papaveraceous plants,³ is the only fully aromatized benzo[c]phenanthridine alkaloid^{4,5} possessing six oxygenated functions at C-2,3,7,8,10,12 in its molecule. Its hydrogenation product, dihydromacarpine has been synthesized² and isolated⁶ later. Macarpine has been shown to be biosynthesized from a protoberberine alkaloid, tetrahydrocoptisine (2) via chelirubine (3), a penta-oxygenated benzo[c]phenanthridine alkaloid.⁷

Recently we have developed an efficient and biomimetic synthesis of various fully aromatized benzo[c]phenanthridine alkaloids including both tetra-⁸ and pentaoxygenated⁹ ones from the corresponding protoberberine alkaloids. On the basis of the above biosynthesis, we investigated the direct transformation of chelirubine

-857 -

(3) to macarpine (1) by introduction of a methoxyl group. We describe here a convenient conversion of oxychelirubine to macarpine and dihydromacarpine. At first, methoxylation of oxychelerythrine (4)^{8a} was examined as a preliminary experiment. Electrophilic substitution of 4 would be expected to take place at C-12 from both electronic and steric effects. Treatment of 4 with N-iodosuccinimide $(NIS)^{10}$ in chloroform under reflux for 18 h afforded regioselectively 12-iodooxychelerythrine (5) [83%, mp 223-224°C, m/e 489(M⁺), ν 1640]. Down-field shift¹¹ of H-1 and H-11 in the ¹H-nmr spectrum of 5 in comparison with those of 4, clearly indicates the position of the iodine in 5 at C-12 (see Table I). Iodination with iodine or iodine monochloride was unsuccessful. Thus, NIS is found to be a useful reagent for iodination of aromatic compounds. This iodide (5) was heated with sodium methoxide in methanol-pyridine for 18 h in the presence of cuprous iodide and cupric oxide¹² to give successfully 12methoxyoxychelerythrine (6) [82%, mp 163.5-164.5°C, m/e $393(M^+)$, ν 1635] and the dehalogenated product (4) (10%). The structure of 6 was supported by the fact that the chemical shifts of H-9 and H-10 signals are the same as those in 5.

Since we succeeded in introduction of a methoxyl group to C-12 position of oxychelerythrine (4) as expected, we next tried to apply this method for a synthesis of macarpine. The starting penta-oxygenated alkaloid, oxychelirubine $(8)^{13}$ was synthesized from the protoberberine $(7)^{14}$ according to our method^{8,9}

		Chemical	Shift (&	L mag	in Hz, CDC	1,)
Compd.	H-1		H-9		H-11	<u>H-12</u>
4	7.14 s	7.53 s	7.37 d	7.97 d	7.97 d	7.51 đ
			(J=	8)	(J=	8)
5	7.43 s	7.52 s	7.36 d	7.88 d	8.51 s	<u> </u>
			(J=	9)		
6	7.28 s	7.49 s	7.36 d	7.91 d	7.61 s	<u> </u>
			(J=	9)		
8	7.13 s	7.47 s	6.96 s	<u></u>	9.00 d	7.48 d
					(J=	9)
10	7.39 s	7.53 s	6.96 s	·	9.61 s	
11	7.46 s	7.59 s	6.96 s	·	8.57 s	

Table I ¹H-nmr Spectral Data

and 8 was converted to dihydrochelirubine $(9)^{13}$ and chelirubine (3),¹³ both of which were identical with the corresponding natural alkaloids. The details of these syntheses will be published elsewhere.

Iodination of oxychelirubine (8) with NIS afforded 12-iodo-oxychelirubine (10) [79%, mp 298-300°C, m/e 503 (M⁺), ν 1635]. The position of the iodine in 10 was again established from its ¹H-nmr spectrum (Table I). Substitution of the iodine in 10 with a methoxyl group was also realized by the procedure as described above to furnish oxymacarpine (11) [70%, mp >300°C, m/e 407 (M⁺), ν 1640] along with oxychelirubine (8) (26%). Reduction of 11 with lithium aluminum hydride followed by sodium borohydride gave dihydromacarpine (12) [92%, mp 177-178°C (lit.²⁾178-179°C), m/e 393 (M⁺), δ 7.82 s, 7.67 s, 7.53 s, 6.61 s, 6.03 s, 6.00 s, 4.09 s, 4.00 s, 3.88 s, 2.53 s]. Oxidation of 12 with 2,3-dichloro-5,6-dicyano-1,4benzoquinone in the presence of sodium hydroxide provided macarpine (1) [91%, mp 275-278°C (lit.¹) mp 283-285°C), δ (d₆-DMSO), 9.79 s, 8.77 s, 8.12 s, 7.88 s, 7.66 s, 6.53 s, 6.34 s, 4.81 s, 4.18 s, 4.14 s]. Synthetic macarpine and dihydromacarpine were identical with natural macarpine and its reduction product,

respectively, in ir and ¹H-nmr spectral comparison and thin-layer chromatographic behavior.

Thus, a penta-oxygenated fully aromatized benzo[c]phenanthridine alkaloid, oxychelirubine (8) derived from the protoberberine (7), was successfully converted to a hexa-oxygenated alkaloids, macarpine and dihydromacarpine according to a biosynthetic route.

ACKNOWLEDGEMENT

We are indebted to Professor N. Takao, Kobe Women's College of Pharmacy, Japan, for a generous supply of natural chelirubine, dihydrochelirubine, macarpine, and dihydromacarpine, and their spectra.

REFERENCES AND NOTE

- 1. J. Slavik and L. Slavikova, Coll. Czech. Chem. Commun., 1955, 20, 356; J. Slavik, L. Slavikova, and J. Appelt, ibid., 1965, 30, 887.
- 2. N. Takao, M. Kamigauchi, M. Sugiura, I. Ninomiya, O. Miyata, and T. Naito, Heterocycles, 1981, 16, 221.
- 3. J. Slavik, V. Novak, and L. Slavikova, Coll. Czech. Chem. Commun., 1976, 41, 2429; J. Slavik and L. Slavikova, ibid., 1966, 31, 3362; J. Slavik, L. Slavikova, and K. Haisova, ibid., 1967, 32, 4420; J. Slavik, ibid., 1961, 26, 2933.
- 4. V. Simanek, "The Alkaloids Chemistry and Pharmacology," Vol. 26, ed. by A. Brossi, Academic Press, Inc., New York 1985, p 185.
- 5. B. D. Krane, M. O. Fagbule, and M. Shamma, J. Nat. Prod., 1984, 47, 1.

- 6. J. Berlin, E. Forche, and V. Wray, <u>Z. Naturforsch. C</u>, 1983, 38, 346.
 7. N. Takao, M. Kamigauchi, and M. Okada, <u>Helv. Chim. Acta</u>, 1983, 66, 473.
 8. a) Chelerythrine: M. Hanaoka, T. Motonishi, and C. Mukai, <u>J. Chem. Soc.</u>, Chem. Commun., 1984, 718; Idem, J. Chem. Soc., Perkin Trans. 1, 1986, 2253; b) Fagaronine and Nitidine: M. Hanaoka, H. Yamagishi, M. Marutani, and C. Mukai, Tetrahedron Lett., 1984, 25, 5169; Idem, Chem. Pharm. Bull., 1987, 35, 2348; c) Fagaridine: M. Hanaoka, H. Yamagishi, and C. Mukai, Chem. Pharm. Bull., 1985, 33, 763; d) Oxyterihanine: M. Hanaoka, N. Kobayashi, and C. Mukai, Heterocycles, 1987, 26, 1499.
- 9. Sanguilutine: M. Hanaoka, N. Kobayashi, K. Shimada, and C. Mukai, J. Chem. Soc., Perkin Trans. 1, 1987, 677.
- 10. Y. D. Vankar and G. Kumaravel, Tetrahedron Lett., 1984, 25, 233.
- 11. W. Brugel, "Handbook of NMR Spectral Parameters," vol.2, Heydon & Son, London 1979, p 508.
- 12. R.G. R. Bacon and S. C. Rennison, J. Chem. Soc. (C), 1969, 308; Idem, i<u>bid</u>., 1969, 312.
- 13. H. Ishii, E. Ueda, K. Nakajima, T. Ishida, T. Ishikawa, K. Harada, I. Ninomiya, T. Naito, and T. Kiguchi, <u>Chem Pharm. Bull</u>., 1978, **26**, 864; H. Ishii, T. Ishikawa, T. Watanabe, Y. Ichikawa, and E. Kawanabe, <u>J. Chem. Soc.</u>, Perkin Trans. 1, 1984, 2283.
- 14. The compound (7) was synthesized by a conventional route. Its details will be reported later.

Received, 23rd January, 1989