PYRIDAZINES 47.¹ THE CONFIGURATION OF NOVEL THIOSEMICARBAZONE DERIVATIVES OF PYRIDAZINECARBALDEHYDES AND ALKYL PYRIDAZINYL KETONES

Johnny Easmon, Gottfried Heinisch*, and Wolfgang Holzer*

Institute of Pharmaceutical Chemistry, University of Vienna Währingerstraße 10, A-1090 Vienna, Austria

<u>Abstract</u> - Structure and configuration of thiosemicarbazone derivatives 1-6, containing a 3-pyridazinyl (1,2,3), 4-pyridazinyl (4,5) or 2-pyridyl moiety (6) were determined by means of ¹H and ¹³C nmr spectroscopy.

INTRODUCTION

Thiosemicarbazones (TSCs) derived from various N-heteroaromatic carbaldehydes and ketones, in particular pyridine derived TSCs, represent an interesting class of bioactive compounds due to antiviral,² antibacterial,³ antimalarial,⁴ antileuce- mic^5 and antineoplastic⁶ activities observed in this series. Recently, we reported on the synthesis of a variety of related pyridazine-derived TSCs of types 1-5 and on investigations of their antiviral activity.⁷ The present article is devoted to spectroscopic studies which were undertaken in order to confirm the structure and to elucidate the configuration of these compounds and of some of their 2-pyridine analogues.

Scheme 1

Thiosemicarbazones derived from 3-pyridazinecarbaldehyde and alkyl 3-pyridazinyl ketones (1,2,3)

According to the ¹H nmr spectra (Table 1), several of the TSCs containing the 3-pyridazinyl moiety, namely compounds 1d, 2c, 2d, 3a, 3b, 3c, 3d are mixtures of E- and Z-isomers. The most remarkable differences regarding chemical shifts of corresponding protons in the two isomeric forms were observed for the resonance signals attributable to the N-H protons: one species with $\delta(NH)=14-15$ ppm, the other with $\delta(NH)=9.5-12.9$ ppm, respectively. Previously it has been shown by Grifantini and co-workers⁸ in the 2-pyridine and 1-isoquinoline series that in the spectra of Z-TSCs, there is an extreme downfield shift of the N-H signal (δ -15 ppm) due to intramolecular hydrogen bonding. Considering these findings, we assign E-configuration to the predominant isomers with the N-H resonance at higher field. From the integration of the peak areas, an E/Z-ratio of \geq 9:1 can be concluded. By contrast, the spectra of TSCs 1b, 1c, 1e, 2b, 2e, and 3e exhibit signals of only one isomeric form. Since the signal of the N-H proton in these spectra appears in the range of 9.5-11.5 ppm, E-configuration is assigned to these compounds.

 $1 \text{ R'=H} \quad 2 \text{ R'=CH}_3 \quad 3 \text{ R'=CH}_2\text{CH}_3$ Scheme 2

These results are further supported by NOE-difference experiments performed with some typical model substances. Thus, for instance, irradiating the methyl resonance of the main isomer of 2d or the formyl-H transition of 1c, respectively, enhanced the corresponding N-H signals. In reverse experiments a positive NOE on the lines mentioned above was detected when the N-H transitions were irradiated (Figure 1). This through-space connection between the N-H proton and the methyl or formyl protons is only possible in the E-configurated species, where the involved protons are spatially close (see Scheme 2). In accordance, on irradiation of the pyridazine H-4 resonance in compound 1c or 2d the corresponding N-H signals remained unaffected. Employing such NOE-difference series, it was also possible to prove that compounds 1a and 2a, (the ¹H nmr spectra of which show signals of only one isomeric form) as well as the major isomer of 3a are present in the E-configuration. In the case of these compounds the chemical shift of the N-H signal (12.8-13.6 ppm) does not permit the unequivocal assignment of configuration.

Figure 1

Comparison of the ¹H nmr data (Table 1) of all E/Z- pairs shows a downfield shift for the pyridazine protons H-5 and H-6 in the Z-form compared to the signals of the E-isomer, whereas the pyridazine proton in o-position to the side-chain (H-4) is more shielded in the Z-form. These findings are in good agreement with observations in the 2-pyridine series⁸ and can be explained as follows: The relative deshielding of H-5 and H-6 in the Z-isomers is consistent with a withdrawal of electron density from the pyridazine ring via the ring nitrogen atom N-2, which is involved in hydrogen bonding. On the other hand, the relative upfield shift of pyridazine H-4 in the Z-isomers may be interpreted in terms of anisotropy of the sp²-hybridized exocyclic nitrogen atom, which comes close to the pyridazine H-4 in one of the possible conformations of the E-isomer (Scheme 2). In the Z-form the stereochemistry prevents such an interaction and consequently in this isomer the pyridazine H-4 is relatively more shielded.

Table 1:	¹ H Nmr chemical the 3-pyridazin	shifts (ppm, yl moiety (1,	DMSO-d ₆) for , 2,3)	thiosemicarbazones	containing
		C 1 11	,		

Comp.	pyrida H-4	azine-1 H-5	н" н-б	formyl-,methyl- or ethyl-H	H of R	N-H
E-la [*]	8.04	7.75	9.21	8.47	2.53	13.56
E-1b [#]	8.05	7.72	9.18	8.47	3.77(2',5'), 1.91(3',4')	11.44
E-1c*	7,99	7.72	9.16	8.41	3.87(2',6'), 1.62(3',4',5')	11.43
E-1d [#]	8.02	7.73	9.17	8.53	3.91(2',7'), 1.77(3',6'), 1.65(4',5')	11.27
z-1d [#]	-+	_*	9.28	7.66	_+	14.84
E-1e [#]	8.00	7.71	9.16	8.43	4.03(2',4'), 2.09(1',5'), 1.67(6',7', 8',9')	11.20
E-2a [*]	8.21	7.77	9.26	2.53	2.57	12.75
E-2b [#]	8.19	7.72	9.21	2.50	3.78(2',5'), 1.91(3',4')	9.80
E-2c*	8.13	7.70	9.19	2.48	3.84(2',6'), 1.61(3',4',5')	9.89
Z-2c [*]	8.01	7.97	9.30	2.40	_*	14.51
E-2d [*]	8.16	7.72	9.19	2.50	3.90(2',7'), 1.77(3',6'), 1.51(4',5')	9.64
z-2ď	8.03	7.98	9.30	2.42	_+	15.01
E-2e [#]	8.15	7.71	9.21	2.51	4.06(2',4'), 2.08(1',5'), 1.69(6',7', 8',9')	9.84
E-3a [*]	8.16	7.73	9.23	3.18(CH ₂) 1.07(CH ₃)	2.51	12.86
z-3a [*]	8.07	7.94	9.32	2.80(CH ₂) 1.16(CH ₃)	2.49	14.86
E-3b*	8.16	7.70	9.19	3.12(CH ₂) 1.09(CH ₃)	3.75(2',5'), 1.89(3',4')	9.85
Z-3b*	8.09	7.97	9.30) 2.82(CH ₂) 1.16(CH ₃)	_*	14.49
E-3c*	8.10	7.69	9.17	3.10(CH ₂) 1.07(CH ₃)	3.83(2',6'), 1.59(3',4',5')	9.95
Z-3c*	8.05	7.95	9.28	2.78(CH ₂) 1.13(CH ₃)	_*	14.11
E-3d [#]	8.16	7.79	9.21	1.13(CH ₂) 1.10(CH ₃)	3.93(2',7'), 1.78(3',6'), 1.56(4',5')	9.70
z-3ª#	-*	_+	9.32	2 2.85(CH ₂) 1.19(CH ₃)	_*	14.81
E-3e [#]	8.13	7.73	9.23	1 3.13(CH ₂) 1.12(CH ₃)	4.07(2',4'), 2.09(1',5'), 1.69(6',7', 8',9')	10.30
* 400 MH	z spect	rum				

400 MHz spectrum * 80 MHz spectrum * overlap with signals of the predominant E-isomer * typical coupling constants: E-isomers: ${}^{3}J(H-4, H-5)$: 8.7 Hz; ${}^{4}J(H-4, H-6)$: 1.7 Hz; ${}^{3}J(H-5, H-6)$: 4.9 Hz Z-isomers: ${}^{3}J(H-4, H-5)$: 8.8 Hz; ${}^{4}J(H-4, H-6)$: 1.5 Hz; ${}^{3}J(H-5, H-6)$: 5.0 Hz

The 13 C nmr data for compounds 1-3 are summarized in Table 4. Assignments were made by several methods. The signals of the quaternary C-atoms could be easily identified using the J-modulated spin echo technique⁹ (decoupler switch-off delay $\tau = 7$ ms for an average ${}^{1}J({}^{13}C, {}^{1}H)$ coupling constant of 143 Hz) and NOE considerations. In addition to information obtained from the ¹H coupled spectra, the assignment of the pyridazine C-resonances was achieved by comparison with the chemical shift values of model pyridazine compounds.¹⁰ The appearance of C=S resonances between 179-202 ppm unequivocally excludes that in DMSO-d₆ solution the TSCs under consideration are present in the S-H tautomeric form. Comparing the chemical shifts of the isomeric pairs of compounds 2c, 2d and 3c, the most characteristic differences between E- and Z-forms concern the resonances of pyridazine C-4 and of C=N as well as the signals of the aliphatic carbon atoms in a-position to the C=N double bond (CH3 or CH2, respectively). The observed effects (downfield shift for pyridazine C-4 and for the CH₂ or CH₂ resonances, upfield shift for C=N in the Z-form relative to the E-form) can be attributed to steric and electronic reasons. These interpretations are in good agreement with results obtained with comparable compounds like E- and Z-arylhydrazone derivatives of 2pyridinecarbaldehyde.¹¹

Thiosemicarbazones derived from 4-pyridazinecarbaldehyde and methyl 4-pyridazinyl ketone (4,5)

In the 1 H nmr spectra of all TSCs of type 4 and 5 (Table 2) only one isomeric form could be detected. In contrast to TSCs 1-3, neither for the E- nor for the Z-form of TSCs incorporating a 4-pyridazinyl core (Scheme 3) the formation of an intramolecular hydrogen bond is possible. Thus, in this series the chemical shift

4 R'=H 5 R'=CH₃

Scheme 3

of the N-H proton cannot be considered as a suitable probe for the determination of the configuration. An unequivocal assignment, however, could be achieved by NOE-difference experiments similar to those described for compounds 1c and 2d. Irradiation of the formyl-H resonances in compounds 4a and 4b or of the methyl-H transition in compounds 5a and 5c, respectively, enhanced the corresponding N-H signal, as well as the signals of pyridazine H-3 and H-5 (Figure 2), whereas a perturbation of the N-H resonances led to a positive NOE on the corresponding formyl or methyl signals. On the other hand, no NOE could be registered on the N-H signals when irradiating the pyridazine H-3 resonances. Thus, E-configuration has to be assigned to compounds 4 and 5. An interesting detail is the negative indirect NOE on H-6 via H-5 obtained on irradiation of the methyl-H, H-5 and H-6.

Figure 2

Comp	pyri H-3	dazine H-5	-н* н-б	formyl- or methyl-H	Hofp	N-H
comp.	11 5		no	meenyr n	h of k	
E-4a	9.46	7.88	9.30	8.22	2.55	13.68
E-4b	9.40	7.78	9.21	8.11	3.75(2',5'), 1.89(3',4')	11.50
E-4c	9.37	7.76	9.22	8.08	3.86(2',6'), 1.62(3',4',5')	11.45
E-4d	9.39	7.77	9.23	8.20	3.91(2',7'), 1.75(3',6'), 1.56(4',5')	11.28
E-4e	9.38	7.76	9.23	8.10	4.03(2',4'), 2.08(1',5'), 1.67(6',7', 8',9')	11.45
E-5a	9.58	7.94	9.30	2,40	2.54	12.72
E-5b	9.56	7.88	9.23	2,30	3.76(2',5'), 1.90(3',4')	9.81
E-5c	9.53	7.86	9.23	2.30	3.84(2',6'), 1.61(3',4',5')	9.97
E-5d	9.55	7.88	9.24	2.30	3.91(2',7'), 1.78(3',6'), 1.56(4',5')	9.68
E-5e	9.52	7.86	9.24	2,30	4.02(2',4'), 2.06(1',5'), 1.66(6',7', 8',9')	9.90

Table 2: ¹H Nmr chemical shifts (ppm, DMSO-d₆) for thiosemicarbazones containing the 4-pyridazinyl molety (4,5)

*typical coupling constants: ⁴J(H-3,H-5): 2.4 Hz; ⁵J(H-3,H-6); 1.2 Hz, ³J(H-5,H-6): 5.5 Hz

The 13 C nmr data for compounds 4 and 5 are summarized in Table 4. Assignments were made as described for compounds 1-3. The results of the NOE-difference experiments, indicating E-configuration for compounds 4 and 5 as described above, are supported by the ¹³C nmr data. Thus, for instance, the chemical shifts of the nonaromatic carbons in the "side-chain" of compounds 5c and 5d are in better agreement with the data of the E-isomers of the 3-pyridazinyl analogoues 2c and 2d than with those of Z-2c and Z-2d. The similar magnitude of the 1 J (13 C, 1 H) spin coupling constant of the formyl-C atom in 4c (169.1 Hz) and in E-1c (169.8 Hz) points to E-configuration of 4c. Such types of coupling constants are known to be very sensitive to stereochemical changes due to the fact that the influence of the sp²-hybridized nitrogen's lone pair in the E-form differs markedly compared to that in the Z-form.¹² This has been demonstrated for comparable E/Z-diastereomeric hydrazones, oximes and imines, 12, 13 which show differences of 10-15 Hz in the above mentioned ${}^{1}J$ (${}^{13}C, {}^{1}H$) coupling constant between E- and Z-isomers. Thus, for **Z-4c** a markedly larger ${}^{1}J$ (${}^{13}C$, ${}^{1}H$) coupling constant has to be anticipated compared to that observed with E-1c due to the now cis-position of the coupled formyl-H and the nitrogen lone-pair orbital.

Table 3: ${}^{1}_{H}$ Nmr chemical shifts (ppm, DMSO-d₆) of thiosemicarbazones containing the 2-pyridyl molety (**6**)

Comp.	РУ Н-3	ridine H-4	-н н-5	н-6	formyl-H	H of R	N-H
E-6a	7.87	7.78	7.33	8.55	8.19	3.75(2',5'), 1.88(3',4')	11.68
Z-6a	7.70	8.01	7.50	8.75	7.52	_+	14.90
E-6b	7.83	7.78	7.32	8.55	8.16	3.86(2',6'), 1.61(3',4',5')	11.21
Z-6b	7.71	8.04	7.49	8.70	7.52	3.93(2',6'), - ⁺ (3',4',5')	14.88

⁺ overlap with signals of the predominant E-isomer

Table 4: ^{13}C Nmr chemical shifts (ppm, DMSO-d_6) of compounds 1-6

	đ	romatic	C C				
Comp.	C-3	C-4	C-5	C-6	C=N-	C=S	other C, notes
E-1a	155.85	123.15	127.42	151.85	143.51	200.01	16.87(SCH ₃); J(N= <u>C</u> - <u>H</u>): 171.7 Hz
E-1c	156.64	122.72	127.23	151.29	140.45	180.13	cycloaliphatic C: 51.11(2',6'), 25.66(3',5'), 23.76(4'); ¹ J(N= <u>C</u> - <u>H</u>): 169.8 Hz
E-2a	157.02	123.75	127.01	151.80	149.07	201.24	17.95(SCH ₃); 12.84(CH ₃)
E-2c	157.54	123.46	126.93	151.41	146.99	181.98	cycloaliphatic C: 51.34(2',6'), 25.66(3',5'), 23.75(4'); 12.04(CH ₃)
Z-2c	155.21	128.67	127.46	150.99	137.13	180.93	cycloaliphatic C: 50.33(2',6'), 25.38(3',5'), 23.75(4'); 21.47(CH ₃)
E-2d	157.50	123.76	126.97	151.38	147.83	181.35	cycloaliphatic C: 51.82(2',7'), 26.98(3',6'), 26.25(4',5'); 11.96(CH ₃)
Z-2đ	156.30	128.78	127.42	150.95	137.67	179.39	cycloaliphatic C: - ⁺ ; 21.31(CH ₃)
E-3a	156.40	124.08	127.11	151.74	152.90	201.50	17.03(SCH ₃); 18.70(CH ₂); 10.87(CH ₃)
Z-3a	155.96	128.57	127.30	151.33	144.30	201.03	16.71(SCH ₃); 27.47(CH ₂); 10.58(CH ₃)
E-3c	156.90	123.70	126.98	151.31	150.22	182.08	cycloaliphatic C: 51.47(2',6'), 25.65(3',5'), 23.74(4'); 17.70(CH ₂); 10.14(CH ₃)
Z-3c	156.04	128.58	126.86	150.95	140.82	180.08	cycloaliphatic C: 50.72(2',6'), 25.51(3',5'), 23.74(4'); 27.23(CH ₂); 11.39(CH ₃)
E-4c	148.25	132.60	122.61	151.71	137.43	180.06	cycloaliphatic C: 51.21(2',6'), 25.68(3',5'), 23.75(4'); ¹ J(N= <u>C</u> - <u>H</u>): 169.1 Hz
E-5a	147.82	134.85	122.94	151.69	146.55	201.59	17.07(SCH ₃); 13.69(CH ₃)
E-5c	147.77	135.41	122.38	151.54	143.82	181.97	cycloaliphatic C: 51.45(2',6'), 25.71(3',5'), 23.76(4'); 12.92(CH ₃)
E-5d	147.81	135.34	122.32	151.46	144.69	181.23	cycloaliphatic C: 52.01(2',7'), 26.94(3',6'), 26.20(4',5'); 12.71(CH ₃)
E-6b	119.19	136.56	123.70	149.30	143.29	180.22	cycloaliphatic C: 51.18(2',6'), 25.66(3',5'), 23.78(4'); pyridine C-2: 153.44
Z-6b	124.16	138.39	125.76	147.84	135.25	179.50	cycloaliphatic C: 50.06(2',6'), 25.31(3',5'), 23.78(4'); pyridine C-2: 151.60

 $^{\rm +}$ overlap with signals of the predominant E-isomer

Thiosemicarbazones derived from 2-pyridinecarbaldehyde (6)

The 1 H and 13 C nmr data of the pyridine-derived TSCs **6a,b** (included in these investigations as comparison materials) are collected in Tables 3 and 4. Compounds **6a,b** turned out to represent mixtures of E/Z isomers (E/Z ratio: **6a** 8:1, **6b** 6:1).

Ir spectroscopic characteristics of compounds 1-6

The most characteristic bands in the ir spectra of compounds 1-6 are the N-H stretching frequencies in the range of 3350-3050 cm⁻¹, the C=S stretching frequencies between 1270-1210 cm⁻¹, and for the methyl dithioates 1a, 2a, 3a, 4a and 5a also a strong band at about 680 cm⁻¹ which is typical for S-CH₃ stretching vibrations. Together with the absence of S-H absorption bands at 2600-2550 cm⁻¹, this clearly indicates the described TSC derivatives 1-6 to exist also in the solid state in the C=S tautomeric form.

CONCLUSION

Based on ¹H nmr spectroscopy including NOE-difference experiments, the configuration of a series of novel TSCs recently synthesized as potential antiviral agents could be determined unequivocally. Compounds 1-3, containing a 3-pyridazinyl moiety exist either in the E-form or as E/Z-isomeric mixtures with the Zportions below 10% in DMSO-d₆ solution. The 4-pyridazinyl derived TSCs 4 and 5 exclusively occur in the E-form. Compounds 6a,b, bearing a 2-pyridyl system turned out to form E/Z-isomeric mixtures with higher amounts of the Z-isomer (up to 20%). ¹³C Nmr spectra of compounds 1-6 support the results obtained from the ¹H nmr spectra. According to the ir spectra all TSCs investigated exist as thioxo tautomers also in the solid state.

EXPERIMENTAL

The nmr spectra were recorded from DMSO- d_6 solutions in 5 mm sample tubes on a Bruker AC-80 or a Bruker AM-400 Fourier-transform spectrometer equipped with an Aspect 3000 computer (operating frequencies for ¹H: 80.13 MHz or 400.14 MHz, ¹³C: 20.15 MHz or 100.61 MHz). The probe temperature was 30°C. The centre of the

solvent multiplet was used as internal standard, which was related to TMS with δ 2.49 ppm for 1 H and δ 39.50 ppm for 13 C. According to the spectral parameters used, the digital resolution in 1 H nmr spectra was 0.5 Hz/point (for the determination of pyridazine-H coupling constants 0.2 Hz/point), in broad-band decoupled or J-modulated spin echo 13 C nmr spectra 0.9-1.2 Hz/point. 1 H-Coupled 13 C nmr spectra were obtained using the gated decoupling technique (digital resolution 0.2 Hz/point). Ir spectra (KBr) were recorded on a Jasco IRA-1 spectrophotometer.

For the preparation of compounds 1-6 see ref.⁷

REFERENCES AND NOTES

- Part 46: G. Heinisch, G. Lötsch, S. Offenberger, B. Stanovnik, and M. Tisler, J. Heterocyclic Chem., submitted for publication.
- C. Shipman Jr., S. H. Smith, J. C. Drach, and D. L. Klayman, <u>Antiviral Res.</u>, 1986, 6, 197.
- A. S. Dobek, D. L. Klayman, E. T. Dickson Jr., J. P. Scovill, and C. N. Oster, Arzneim.-Forsch./Drug Res., 1983, 33, 1583.
- D. L. Klayman, J. P. Scovill, J. F. Bartosevich, and C. J. Mason, <u>J. Med.</u> Chem., 1979, **22**, 1367.
- 5. R. W. Brockman, J. R. Thomson, M. J. Bell, and H. E. Skipper, <u>Cancer Res.</u>, 1956, **16**, 167.
- D. L. Klayman, J. P. Scovill, C. J. Mason, J. F. Bartosevich, J. Bruce, and A.J. Lin, <u>Arzneim.-Forsch./Drug Res.</u>, 1983, 33, 909.
- J. Easmon, G. Heinisch, W. Holzer, and B. Rosenwirth, <u>Arzneim.-Forsch./Drug</u> <u>Res.</u>, in the press.
- I. Antonini, F. Claudi, P. Franchetti, M. Grifantini, and S. Martelli, <u>J. Med.</u> <u>Chem.</u>, 1977, 20, 447.
- 9. C. Le Cocq and J.-Y. Lallemand, <u>J. Chem. Soc. Chem. Commun.</u>, 1981, 150.
- 10. G. Heinisch and W. Holzer, manuscript in preparation.
- 11. R. N. Butler and S. M. Johnston, J. Chem. Soc., Perkin Trans.1, 1984, 2109.
- 12. V. M. S. Gil and W. von Philipsborn, Magn. Reson. Chem., 1989, 27, 409.
- H. O. Kalinowski, S. Berger, and S. Braun, "¹³C-NMR Spektroskopie", Georg Thieme Verlag, Stuttgart-New York, 1984.

Received, 10th April, 1989