SYNTHESIS AND REACTION OF 3-HYDROXYENAMIDES

Shunsaku Ohta,* Motoshige Sumino, Tsutomu Sasaki, and Nobuyuki Yamagami

Kyoto Pharmaceutical University

Misasagi Nakauchi-cho 5, Yamashinaku, Kyoto 607, Japan

Abstract — 3-Hydroxyenamides (7) were prepared starting from 1,3-dicarbonyl compounds (4), and the enamides (7) readily reacted with π nucleophiles in the presence of trifluoroacetic anhydride to give 3-arylketones (11) in moderate yields.

N-Acyliminium salt (2) has been well-known as an important reactive intermediate especially for an intramolecular C-C bond formation, and the salt (2) has been prepared in situ mainly by treating N-(1-hydroxy- or 1-alkoxyalkyl) amide (1) with an appropriate acid. Although the methodology seems to be useful in preparation of amide- or lactam-containing compounds (3), removal of the amide moiety after the C-C bond construction has not been almost considered. In this communication, we would like to report a new C-C bond forming reaction via the N-acyliminium intermediate analogues, the amide function of which can be removed in a hydrolytic manner after the reaction.

1,3-Dicarbonyl compound reacts with a primary or secondary amine readily to give the 3-enaminoketone, whereas reaction of 1,3-dicarbonyl compound with amide has not been common. We found that 1,3-dicarbonyl compound (4) readily reacts with primary or secondary amide (5) as well as amine under azeotropically dehydrative conditions in the presence of an acid catalyst (p-toluenesulfonic acid; TsOH) to give the 3-

enamidocarbonyl compound (6). The carbonyl function of the enamides (6) was reduced by lithium borohydride (LiBH₄) to give the corresponding 3-hydroxyenamide (7) in moderate yields.

Table I. 3-Enamidoketone (6) and 3-Enamidoalcohol (7) Prepared

Compound		(℃) wb or pb	Yield (%)	Compound		wp or bp	Yield (%)
	6a €	тр 70-71	54.3	OH O	7 <u>a</u>	oil ^{b)}	32.3
H ₃ 0 CH ₃ 0	€b	mp 65-66	35.2	CH3 CH3 P	~ 7b	oil ^{b)}	35.9
H3 H CH	³ 6€	mp 40-42 bp₂73-75	64.9	CH3 OH CH3 0	7c a)	bp.75-78	56.7
O CH ₃	6d ≈	mp 51-52 bp,122-125	36.5	н "			

a) prepared by treatment of 6c with CH3Li in THF at -78°C.

b) purified by silica gel chromatography.

The hydroxyenamide (7a) was treated at room temperature with trifluoroacetic anhydride (TFAA) in trifluoroacetic acid (TFA) in the presence of anisole (Entry 1 in Table II). The hydroxyenamide (7a) was disappeared within several hours. Silica gel chromatography of the crude product gave an oily compound in 40.0 % yield, of which spectral and analytical data indicated that the product was 3-(4-anisyl)cyclohexanone (11a). The reaction might proceed via a nucleophilic attack of anisole to the conjugated iminium intermediate (8) to produce the enamide (10),

which was hydrolyzed to the ketone (11a) during the work-up procedure. Several applications of the present reaction to other reaction systems are listed in Table II.

Table II. 3-Arylketones (11) Obtained

Entry	Starting	Materials	Product			
-		2	11 mp	or bp (°C)	Yield (%)	
1	7a ∼	OCH3	l 11a	mp<30 ^a)	40.0	
2	7a ∼	$\bigcirc C_0$	0CH ₃	mp 57-58	43.4	
3	7a ∼	OCH ₃ OCH ₃	OCH ₃ 11c	л р 76-77	34.1	
4	7a ∼	© CH3	(no reaction)	-	-	
5	<u>7</u> b	$\bigcirc \downarrow^0_0 \rangle$	$= \left(\begin{array}{c} CH_3 & CH_3 \\ CH_3 & O \\ CH_3 & O$	oil ^{a)}	10.1 7.6	
6	7a ∼	© NH	ON O LIF	шр 105-106	42.1	
7	<u>7c</u>	\bigcirc	CH3 CH3 CH3 CH3 CH3	bp, 150-155	25.2	

a) purified by silica gel chromatography.

The reaction of the enamide (7b) with 1,2-methylenedioxybenzene (entry 5) afforded a normal product (11d) and an interesting doubly attacked product (11e). Generally speaking, the yields of the present C-C bond forming reaction are moderate or low. Typical procedure (entry 1 in Täble II): A solution of anisole (0.5 ml, 4.60 mmol) in dry dichleromethane (0.5 ml) was added at 0 °C under N, atmosphere to a mixture of the hydroxyenamide (7a, 181 mg, 1 mmol), TFA (1 ml) and TFAA (141 µl, 1 mmol). The mixture was stirred at ambient temperature for 2 h. The reaction mixture was

b) Stereochemistry of the product was not determined, but hrms and 'H-nmr supported the plane structure.

neutralized by addition of water (10 ml) and solid K_2CO_3 . The product was extracted with ethyl acetate. Removal of the solvent gave anoily residue, which was purified by silica gel chromatography (CHCl₃/CH₃OH = 20/1) to give colorless prisms of 11a. Yield, 82 mg (40.0 %). Ir (CHCl₃): 1715 cm⁻¹ (C=O). ¹H-Nmr (80MHz in CDCl₃) δ : 1.61-2.61 (m, 8H, CH₂ x 4), 2.83 - 3.05 (m, 1H, CH-Ar), 3.79 (s, 3H, OCH₃), 6.76-7.25 (m, 4H, Ar-H). High-Resolution ms m/z for $C_{1.3}H_{1.6}O_2$ Calcd: 204.1151; Found: 204.1146.

Improvement of the yield and further applications of the present methodology are now under investigation.³

ACKNOWLEDGEMENT

The authors are grateful to Dr. Masao Okamoto of Kyoto Pharmaceutical University for his valuable advices during the present work.

REFERENCES

- 1) For review: W.N.Speckamp and H.Hiemstra, Tetrahedron, 1985, 41, 4367.
- S.A.Grickman and A.C.Cope, J. Am. Chem. Soc., 1945, 67, 1017; N.H.Cromwell, Chem. Reviews, 1946, 38, 83.
- 3) An outline of the present work was presented at The 38th Annual Meeting of Japan Pharmaceutical Society, Kinki-Branch (November 6, 1988, Higashiosaka; Paper, p 36).

Received, 21st April, 1989