TORVONIN-B, A SPIROSTANE SAPONIN FROM SOLANUM TORVUM

Pawan K.Agrawal^{*}, Umar Mahmood, and Raghunath S.Thakur Central Institute of Medicinal and Aromatic Plants, Lucknow 226016, India

Abstract - A new steroidal saponin, 'torvonin B' $(\underline{1})$ has been isolated from S. torvum leaves and its structure has been established as neosolaspigenin-3-0- β -D-fucopyranosyl- $(1 \rightarrow 2)$ - β -D-quinovopyranoside.

In continuation with our work on steroidal saponins from Solanum torvum², now we have isolated a new saponin, designated as torvonin B (1) from the chloroform extract of the leaves of S. torvum.

RESULTS AND DISCUSSION

Chromatographic fractionation of the chloroform extract of the leaves of Solanum torvum afforded a saponin $\frac{1}{2}$ which showed broad hydroxyl absorption bands in the region of 3700-3200 cm $^{-1}$ and $1160-1000~{
m cm}^{-1}$ in its ir spectrum, indicative of its glycosidic behaviour. Its $^1{
m H}$ nmr spectrum displayed six methyl signals, two as singlets at 6 0.82, 0.84 (H-18 and H-19), four doublets (J = 6.5 Hz) at \S 1.53, 1.55, 1.64 and 1.71 corresponding to H-21, H-27 and two methyls of two 6-deoxysugars. The appearance of one proton quartet (J=7.5 Hz) at S 4,63, a doublet (J=11 Hz) at \S 3.55 and a double doublet at \S 4.20 (J=11, 2.5 Hz) corresponding to hydrogens at 16, 26β and 26α positions, respectively, indicated its spirostane nature with an axially oriented methyl group at C-25 $(258)^3$. The hydroxymethine signals at § 3.65 and 4.06 (see experimental) were assigned to the equatorial orientation of 6-hydroxy group and the axial orientation of the 23-hydroxy group 4 , whereas the hydrogen at C-3 at 6 3.73 as broad multiplet (W½ = 22 Hz) inferred its axial position. Remaining 1 H nmr signals in the region 0.5 to 3.2 ppm resembled very much with the reported $^{1}\mathrm{H}$ nmr for neosolaspigenin $^{4}\mathrm{,}$ thus identifying its genin as neosolaspigenin. The anomeric proton signals observed at 6 4.75as a doublet (J=8 Hz) and at 6 4.81 as broad singlet (W $\frac{1}{2}$ =4 Hz) clearly demonstrated the ${\cal B}$ -anomeric configuration of the H-1 of the 6-deoxyhexose sugars.

Acid Hydrolysis of $\frac{1}{2}$ resulted in the formation of several products (genin part) which could

not be isolated 5,6 due to paucity of material whereas fucose and quinovose were identified (PC) in sugar part. $\underline{1}$ readily formed a heptaacetyl derivative $\underline{2}$. The mass spectrum of $\underline{2}$ showed characteristic fragment at m/z 503 for the pentaacetylfucosylquinovorose moiety in addition to peaks at m/z 273, 189, 171,153 and 111 due to triacetyl- and diacetyl-6-deoxy-hexose sugar moieties.

The ^{13}C nmr spectrum of $\underline{1}$ (Table 1) showed 39 carbon signals which were due to 21 x CH. $9 \times \text{CH}_2$, $6 \times \text{CH}_3$ and $3 \times \text{quaternary carbon atoms as depicted from the DEPT spectrum,$ hence inferring the presence of a disaccharide moiety. The appearance of the signal for C-22 at \$ 110.44 which was ca. 1 ppm downfield in comparison with ring-F unsubstituted spiro- 8,9 suggested the presence of an axial hydroxyl at C-23 as equatorial orientation of the 23-OH group led to its appearance at 112.6 ppm^{10} . The signals due to the aglycone were assigned by comparison with reported literature values which lead to the identity of the genin as neosolaspigenin. The assignment of the 13 C nmr resonances of the sugar carbon resonances was based upon comparison with the spectra of appropriate methyl- β -D-glycopyranoside 11 , the known glycosidation shifts 7,8 and the assignments reported for similar glycosides 12,13 . This infered the presence of β -D-fucopyranosyl moiety as the terminal sugar residue which is linked to $\mathcal{B}\text{-}D\text{-}\text{quinovopyranosyl}$ moiety via (2 \rightarrow 1) interglycosidic linkage as C-2 appeared at 6.89 ppm lowerfield. Moreover C-1 and C-3 resonances of the β -D-quinovopyranose were observed at 2.24 and 1.81 ppm higher field thus providing further proof for the above mentioned interglycosidic linkage. The appearance of C-2, C-3 and C-4 resonances at 6 32.23, 79.45 and 32.38 clearly demonstrated the presence of free hydroxyl groups at C-6 and C-23 positions and involvement of 3β -OH group in the formation of glycosidic bond⁸. Considering all the above evidences, torvonin-B was identified as neosolaspigenin-3-O-\$-D-fucopyranosyl- $(1 \rightarrow 2) - \beta$ -D-quinovopyranoside (1).

EXPERIMENTAL

<u>Plant Material</u> - The leaves of <u>S. torvum</u> were collected from Dehradun, U.P.(Indía). A voucher specimen is deposited in CIMAP herbarium collection No.249.

Extraction and Purification - The air dried leaves (5.5 kg) were powdered and extracted at room temp. by stirring for 16 h with <u>n</u>-hexane $(5 \times 7 \text{ l})$ followed by MeOH $(5 \times 7 \text{ l})$. The MeOH extract was evaporated in vacuo to 500 ml. Water(1 l) was added and the mixture was extracted with CHCl₃ $(5 \times 1 \text{ l})$. CHCl₃ extract was concentrated to dryness (122 g) and

a part of the extractive (60 g) was chromatographed over silica gel and eluted with hexane and hexanc with increasing polarities of benzene and CHCl_3 . The eluates were collected in 500 ml portions.

Table 1 $$^{13}{\rm C}$ Nmr Chemical Shifts for Torvonin-B (Pyridine- ${\rm d}_5)$

Carbon lo.	Chemical Shifts	Carbon No.	Chemical Shifts	Carbon No.	Chemical Shifts
.•	37.79	15	33.17	3-Quinovose	
	32.23	16	81.56	1	103,06
	79.45	17	64.57	2	83.49
:	32.38	18	17.20	3	76.19
	51.33	19	13.59	4	75.24
	69.92	20	41.17	5	72,77
	41.43	21	16.56	6	18.64
	34.30	22	110.44	(2→1) fucose	
	53.91	23	65.35	1	105.59
0	36.75	24	34.49	2	72.68
1	21.22	25	27.28	3	74.16
2	39.95	26	65.35	4	72.58
3	40.86	27	20.52	5	70,63
4	66.48			6	16.79

An important fraction obtained by eluting with $CHCl_3$ -MeOH (85:15) gave white residue (4.5g) which exhibited the presence of two spots with very close Rf values on tlc. The above

residue, on further fractionation on silica gel column using $CHCl_3$ -MeOH- H_2O (60:17:10, organic layer as eluent, 100 ml each fraction) yielded torvonin B containing fractions (17-19) which afforded torvonin B (105 mg) on crystallization (MeOH-CHCl₂).

Torvonin B (1), colourless powder (Anal. Calcd for $C_{39}H_{64}O_3$: C, 63.25; H, 8.64. Found C, 63.22; H.8.65), mp 274°C, [α]_D = -4.5°(C,0.30, Pyridine). Ir γ KBr cm⁻¹ 3700-3200 (broad, OH), 1380,1215, 1170, 1160-1000 (broad, C-O-C), 950,930,900 and 830. ¹H Nmr (400 MHz, C_5D_5N) & 0.82 (3H, s, H-18), 0.84 (3H, s, H-19), 1.53 (3H, d, J = 6.5 Hz, H-21), 1.55 (3H, d, J = 6.5Hz, H-27), 1.64 (3H, d, J = 6.5Hz, H-6 of sugar), 1.71 (3H, d, J = 6.5Hz, H-6 of sugar), 3.55 (1H, d, J = 11Hz, 26 α -H), 3.65 (1H, td, J = 10, 5Hz, 6 β -H), 3.73 (1H, m, W½ = 22Hz, 3 α -H), 3.80 (4H, m, sugar-H), 4.00 (1H, m, sugar-H), 4.06 (1H, t, J = 7Hz, 23 α -H), 4.20 (1H, dd, J = 11, 2Hz, 26 β -H), 4.28 (1H, t, J = 9Hz, sugar-H), 4.35 (1H, t, J = 11Hz, sugar-H), 4.61 (1H, dd, J=9, 4Hz, sugar-H), 4.63 (1H, q, J=7.5Hz, 16-H), 4.75 (1H, d, J = 8Hz, anomeric-H), 4.81 (1H, brs, W½ = 4Hz, anomeric-H); ¹³C nmr (see table 1).

Acetylation of torvonin B. Compound (1) (10 mg) was acetylated with Ac_2O (0.2 ml) and pyridine (0.2 ml) at room temperature for 12 h and after usual work up it gave hexaacetate 2 (12 mg) (Anal. Calcd for $C_{53}H_{78}O_{20}$: C, 61.51; H, 7.54; Found C, 61.53; H, 7.53), mp 169°C. Ir v KBr cm⁻¹ 2950, 2845, 1710 (broad), 1456, 1382, 1240-1205 (broad), 956, 935, 860, 845. Ms m/z 1034 (M⁺), 914, 503, 397, 283, 273, 189, 171, 153,111, 42.

Acid Hydrolysis of torvonin B. Compound (1) (20 mg) was treated with 7% methanolic ${\rm H_2SO_4}$ (5 ml) for 5 h under reflux and worked up as usual. The aq. portion revealed the presence of fucose and quinovose on PC (BuOH-AcOH-H₂O, 4:1:5) by comparison with authentic samples while aglycone part showed several spots on tlc due to decomposition of genuine aglycone 4,5 .

ACKNOWLEDGEMENTS

We are thankful to Prof. Dr. H.-J.Schneider, Universitat des Saarlandes, Saarbrücken, F.R. Germany for $^1{\rm H}$ and $^{13}{\rm C}$ nmr data.

REFERENCES

- Part 29, in the series Studies on Medicinal Plants. Part 28 see B.Singh, P.K.Agrawal, and R.S.Thakur, <u>J.Nat.Prod.</u>, 1989, <u>52</u>, 180. CIMAP Publication No.860.
- 2. U.Mahmood, P.K.Agrawal, and R.S.Thakur, Phytochemistry, 1985, 24, 2456.
- 3. G.Blunden, J.A.Jaffer, K.Jewers, and W.J.Griffen, J.Nat. Prod., 1981, 44, 441.

- 4. U.Mahmood, R.S.Thakur, and G.Blunden, J.Nat. Prod., 1983, 46, 427.
- 5. A.K.Chakravarty, T.K.Dhar, and S.C.Pakrashi, Tertrahedron Lett., 1978, 3875.
- 6. A.K.Chakravarty, T.K.Dhar, and S.C.Pakrashi, Phytochemistry, 1980, 19, 1249.
- 7. P.K.Agrawal and M.C.Bansal, 'Carbon-13 NMR of Flavonoids' ed. by P.K.Agrawal,
 Elsevier Science Publisher, Amsterdam, 283, 1989.
- 8. P.K.Agrawal, D.C.Jain, R.K.Gupta, and R.S.Thakur, Phytochemistry, 1985, 24, 2479.
- 9. P.K.Agrawal and R.S.Thakur, Indian J.Chem., 1986, 25B, 469.
- 10. A.K.Chakravarty, S.C.Pakrashi, and J.Uzawa, Can. J.Chem., 1981, 59, 1328.
- 11. I.Kitagawa, T.Nishino, and Y.Kyogoku, Tetrahedron Lett., 1979, 419.
- 12. I.Bruno, L.Minale, C.Pizza, F.Zollo, R.Ricco, and F.M.Mellon, <u>J.Chem.Soc., Perkin Trans.</u>
 I, 1984, 1875.
- 13. Riccio, C.Pizza, O.Squillace-Greco, and L.Minale, <u>J.Chem.Soc.</u>, <u>Perkin Trans. I</u>, 1985, 655.

Received, 26th April, 1989