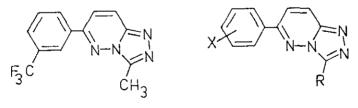
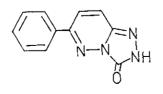
SYNTHESIS OF NEW s-TRIAZOLO[4,3-b]PYRIDAZINES

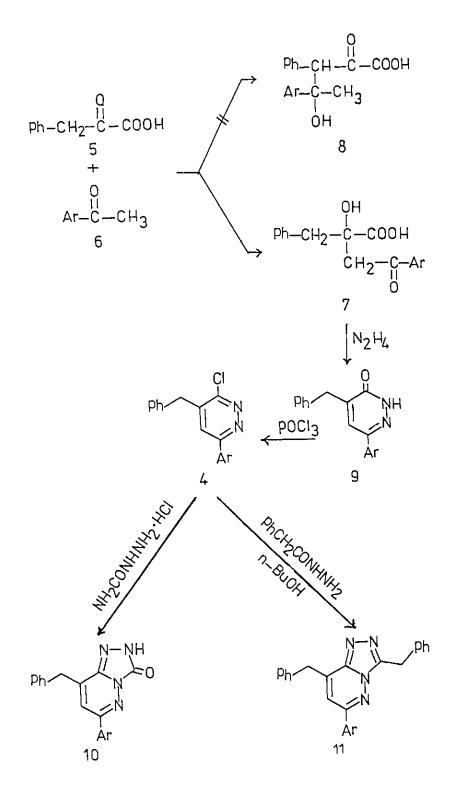

Abdel Moneim El Massry and Adel Amer

1

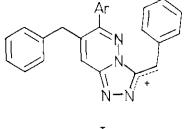

Department of Chemistry, Faculty of Science Alexandria University, Alexandria, Egypt

<u>Abstract</u> The 2,3-dihydropyridazin-3-ones 9 were synthesized via functionalized pyruvic acids 7 with hydrazine hydrate. Transformation of 9 to s-triazolo[4,3-b]pyridazines 10_{a-c} and 11_{a-c} has been achieved through the 3-chloropyridazines 4 by treatment with semicarbazide and phenylacetylhydrazine, respectively.

As part of a program in medicinal chemistry involved with the synthesis of novel heterocycles and their interaction with the benzodiazepine receptor complex, we noticed with interest several reports on triazolo[4,3-b]pyridazine derivatives such as 1^1 which has been a useful probe in labeling the benzodiazepine receptor in rat brain². Some of these compounds 2 and 3 are also useful as anxiolytic agents³ and antihypertensive^{4,5}. These above reported findings promoted us to design a synthetic method to prepare s-triazolopyridazine ring system which contains substituents at C-6 and C-8 and to study their biological activity.


2

Our initial objective was an expeditious synthesis of substituted 3-chloropyridazines 4, since 3-chloropyridazines react with semicarbazide or acylhydrazide to yield s-triazolo[4,3-b]pyridazin-3(2H)-ones or 3-substituted striazolo[4,3-b]pyridazines, respectively. A potential route to 6-aryl-4-benzyl-3-chloropyridazines 4 is acheived from phenylpyruvic acid 5. Compounds 7 required for the present study were prepared by treatment of 5 with aryl methyl ketones 6 in aqueous ethanolic alkaline medium⁶ at 0°C. Whereby colorless solids were obtained. On the basis of spectroscopic data, these products were confirmed to be compounds 7 rather than compounds 8. Their ^{1}H nmr spectra (Table I) exhibited a characteristic two doublets in the region of δ 3.15-3.70 ppm of one proton intensity each, due to nonequivalent methylene protons adjacent to carbonyl group and the methylene protons adjacent to phenyl group caused a singlet of two proton intensity in the region of δ 2.80-3.03 ppm. Compounds 7 are existing in the open form in the solid state. Thus, absorptions in the regions 1670-1685, 1710-1745 and 3480-3500 cm⁻¹ in their infrared spectra indicated the presence of carbonyl, carboxyl and hydroxyl groups, respectively. When compounds 7 were refluxed with hydrazine hydrate in ethanol for three hours, coloress products were obtained whose elemental analysis indicated the loss of three molecules of water during the condensation process. Based on the spectroscopic data their structure were confirmed to be 6-aryl-4-benzyl-2,3dihydropyridazin-3-ones 9 (Table II). The pyridazinones 9 were converted to the chloropyridazines 4 by treatment with phosphoryl chloride (Table III).


Treatment of compounds 4 with semicarbazide hydrochloride in boiling ethanol containing a small amount of mineral acid gave 6-aryl-8-benzyl-2,3-dihydro-s-triazolo[4,3-b]pyridazin-3-ones 10 in good yields (Table IV). However, it was claimed earlier⁷ that the presence of an electron attracting group at the 6-position of 3-chloropyridazine was necessary for such cyclization reaction to take place.

The structures of compounds 10_{a-c} were supported by ir, ¹H nmr and ms spectroscopy as well as elemental analysis. The ir spectra of 10_{a-c} showed bands in the regions of 1700-1735 cm⁻¹ (CO) and 3000-3100 cm⁻¹ (NH). Their ¹H nmr spectra in dimethyl sulfoxide-d₆ solution (Table IV) showed only one exchangeable singlet in the region of δ 12.58-12.76 ppm (1H,NH) in addition to the methylene

and aromatic protons signals. Only a small number of intense fragment ions were observed in the mass spectra of all type 10 compounds. It was found that the molecular ion of 10_{a-c} at m/z 302, 316 and 332 was the prominent ones (base peaks), this suggests a high stability of the dihydro-s-triazolo[4,3-b]-pyridazin-3-one ring.

Similarly, the condensation of 4_{a-c} with phenylacetylhydrazine in butanol produced 6-aryl-3,8-dibenzyl-s-triazolo[4,3-b]pyradizines 11_{a-c} . The structure assignments of 11 were based on nmr, ir, and ms data (see Table V). The ¹H nmr spectra of 11_{ac} deuteriochloroform showed a fine doublet at δ 4.43 of the methylene protons attached to C-8 which is attributed to the allylic coupling with the proton at C-7 of the triazolopyridazine ring. The ms spectra of 11_{a-c} showed intense [M][‡] and [M-1][‡]. Since the H radical is probably the most unfavourable leaving group in any fragmentation, the high intensity of the [M-H][‡] peak (the base peak in case of 11_b and 11_c) indicated efficient stabilization of the resulting ion I.

Ι

Results of pharmacological screenings will be reported elsewhere.

EXPERIMENTAL

Melting points were determined on a Mel-Temp melting point apparatus and are uncorrected. Analytical tlc was performed using the ascending technique with EM silica gel 60 F_{254} precoated on plastic sheets. Ir spectra were obtained on a Perkin Elmer model 599 spectrophotometer and were calibrated against the 1601 cm⁻¹ band of polystyrene. ¹H Nmr spectra were obtained on an IBM NR-80 or varian EM-390 spectrometer. Chemical shifts are expressed in δ scale relative to tetramethylsilane as internal standard. A Hewlett-Packard 5995 gas chromatograph/ mass spectrometer was used to record ms data at 70 ev. Elemental analyses were performed at Alexandria University, Faculty of Science Central Laboratory.

2-Hydroxy-3-phenyl~2-(substituted phenacyl)propanoic acids 7_{a-c}. General procedure.

To a solution of 5 (3.28 g, 20 mmol) and 6 (20 mmol) in ethanol (15 ml) was added a solution of potassium hydroxide (2.24 g, 40 mmol) in water (15 ml) and the reaction mixture was kept at 0°C for three days. The mixture was then acidified with concentrated hydrochloric acid and the product which solidified⁸ after two days was collected by filtration and crystallized from appropriate solvent. Yields and physical properties are summarized in Table I.

6-Aryl-4-benzyl-2,3-dihydropyridazine-3-ones 9a-c. General procedure.

A solution of 7 (1.7 mmol) in ethanol (10 ml) was refluxed with 99% hydrazine hydrate (1 ml) on a water-bath for three hours. The product which separated out on concentration was collected by filtration, dried, and crystallized from appropriate solvent. Yields and physical properties are summarized in Table II.

6-Aryl-4-benzyl-3-chloropyridazines 4_{a-c}. General procedure.

A mixture of **9** (15 mmol) and phosphoryl chloride (49.35 g, 30 ml) was refluxed for two hours, cooled and cautiously poured into crushed ice. The mixture was neutralized with saturated solution of NaHCO₃ and the resulting precipitates were collected by filtration, washed with water, dried, and crystallized from ethanol. Yields and physical properties are summarized in Table III.

6-Aryl~8-benzyl-2,3-dihydro-s~triazolo[4,3-b]pyridazin-3-ones 10_{a-c}. General procedure.

A mixture of 4 (3.6 mmol), semicarbazide hydrochloride (0.40 g, 3.6 mmol) and 75% ethanol (50 ml) in presence of several drops of hydrochloric acid was heated to boiling for eighteen hours. The yellow precipitates which were separated out after concentration and cooling were collected by filtration, dried, and crystallizd from appropriate solvent. Yields and physical properties are summarized in Table IV.

6-Aryl-3,8-dibenzyl-s-triazolo[4,3-b]pyridazines 11a-c. General procedure.

A mixture of 4 (4.0 mmol), phenylacetylhydrazine (0.60 g, 4.0 mmol) in butanol (10 ml) was refluxed for eight hours. Butanol was removed by distillation under reduced pressure, and the residue was treated with water. The solid products

were collected by filtration, dried, and crystallized from appropriate solvent. Yields and physical properties are summarized in Table V.

Table I _____ ------Ir(cm⁻¹) Yield Mp Molecular Analyses 1_{Н-Маг} (б) Compound x °c No. Аr Formula Calcd&Found со соо он (CDCL₃) (a) (K8r) с н _____ 46.8 142-144° c₁₇H₁₆0₄ 71.82 5.67 1680 1730 3490 7a ^с6^н5 3.02(s,2H,CH₂-ph),3.30, CCl₄/Pet 71.60 5.70 3.70(2d, J=16Hz,2H, ether CH2-CO),7.28,7,78 (2a,10H,Aromatic H). c₁₈H₁₈o₄ 72.47 6.08 1670 1710 3480 Р-СН₃С6Н4 40.3 145-147 7b 2.70(s, 3H,CH3),2.80 EtDH 72.80 6.20 (s, 2H,CH₂-ph),3.15,3.55, (2d, J=18Hz,2H,CH2CO), 6.98,7.53 (2m, 9H, Aromatic H) c₁₈H₁₈0₅ 68.78 5.77 1685 1745 3500 7c P-CH-0C6H2 27.5 166-167 3.03(s, 2H,CH₂ph),3.16 68.50 6.80 с₆н₆ 3.66(2d,J=18Hz,2H CH₂CO),3.80(s,3H,DCH₂), 6.80,7.02,7.75(d, J=9Hz, m,d,J=9Hz,9H,Aromatic H). (a) solvent of crystallization

Table II

Campo Na.	und Ar	Yield %	Mp °C	Molecular Formula	Analys Calcd&F		Ir(cm ⁻¹) CON	¹ μ-Νωτ (δ) (CDCL ₃)
			(a)	·····	с н	N 	(KBr)	
9a	¢ ₆ H ₅	70.9	179-181 EtOH	c ₁₇ H ₁₄ N ₂ O	77.84 5.38 77.40 5.70			3.96(s, 2H,CH ₂),7.45, 7.75(2m,11H,Aromatic H,=CH) 12.32(s,1H,NH is deuterium oxide exchangeable)
9Ь	P-CH3C6H4	70.9	216-218 EtOH	с ₁₈ н ₁₆ N ₂ 0	78.23 5.84 77.90 6.10			2.37(s,3H,CH ₃),3.97 (s,2H,CH ₂),7.18,7.51 (m,d,J=9Hz,10H,Aromatic H,=CH), 12.05(s,1H,NH is deuterium oxide exchangeable).
9c	Р-СН ₃ ОС ₆ Н4	82.1	201–203 ^C 6 ^H 6	^c 18 ^H 16 ^N 2 ^O 2	73.95 5.52 73.80 5.50			3.78(s,3H,OCH ₃),3.94 (s,2H,CH ₂),6.87,7.24, 7.55(d,J=9Hz,m,d,J=9Hz, 10H,Aromatic H,=CH), 11.31(s _. 1H,NH is deuterium oxide exchangeable).

HETEROCYCLES, Vol. 29, No. 10, 1989

Table III

Сопро	ound	Yield	Ħр	Molecular	,	nalys	25	¹ H-N#r (5)
No	o. Ar	X	°c	Formula	Cal	cd&Fo	hur	(CDCL ₃)
					C	н	N	
4a	с ₆ н ₅	87.2	114-116	C17H13CLN2	72.73	4.67	9.98	4.10(s,2H,CH ₂),7.23,7.87
	0,7			11 15 2	72.40		10.20	(2m,11H,Aromatic H,=CH).
ь	P-CH3C6H4	96.6	113-115	C18H15CLN2	73.34	5.13	9.51	2.47(s,3H,CHz),4.14
					73.10	6.30	9,30	(s,2H,CH ₂),7.3D,7.83
								(m,d,J=9Hz,10H,Aromatic H,≃CH)
4 c	P-CH30C6H4	95.4	133-135	^C 18 ^H 15 ^{CLN} 2 ⁰	69.56	4.87	9.02	3.82(s,3H,OCH3),4.08
					69.90	5.20	9.20	(s,2H,CH2),6.90,7.20,
								7.83(d,J=9Hz,m,d,J=9Hz,
								10H,Aromatic H,=CH).

Table IV

mpound		Yield	Mp	Molecular	Analyses Calcd&Found			Ir(cm ⁻¹) ED NH		1H-Nmr (5)	Ms (m/z) (Relative intensity)		
NO.	Ar	×	°C	Formula						(DMSO -d ₆)			
			(a)		с	н	N	(K	Br)	3	•••••		
10a	С ₆ Н ₅	55.2	230-231	C ₁₈ H ₁₄ N ₄ 0	71.51	4.67	18,53	1735	3100	4.13(s, 2H,CH ₂ -Ph),	302	301	245
	0 5		EtOH	10 14 4	71.60					7.43,7.98(2m, 11H,	(100)	(17)	(14
										Aromatic H,=CH),	230	115	91
										12.76 (s,1H,NH).	(14)	(11)	€10
10ь	P-CH3C6H4	65.2	251-252	^C 19 ^H 16N4O	72.13	5.10	17.71	1720	3100	2.37(s,3H,CH ₃),4.11	316	315	244
			MeOH				17.40			(s,2H,CH ₂ -Ph),7.31,	(100)	(15)	(5)
										7.68(m,d,J=9Hz,10H,	259	115	91
										Aromatic H,≈CH),12.71 (s,1H, NH).	(7)	(5)	(7)
10c	P-CH30C6H4	75.3	225-226	^C 19 ^H 16 ^N 4 ^O 2	68.66	4.85	16.86	1700	3000	3.84(s,3H,0CH ₃), 4.12	332	331	275
			EtOH		68.40	4.40	16.50			(s,2H,CH2-Ph),6.97,	(100)	(12)	(6)
										7.28,7.86(d, J=9Hz, m,d,	115	91	
										J=9Hz,10H,Aromatic H,	(2)	(2)	
	t of crystalli.									≈CH), 12.58 (s,1H,NH).			

	(a)				nd	(CDCl3)	Ms (m/z) (Relative intensity)		
			C	H 	N	-			
11a C ₆ X5 75.	2 179-181	c25H20N4	79.76	5,36	14.88	4.45(d,J=0.4Hz,2H,CH ₂ -Ph),	376	375	273
	EtOH		79.70	5,30	14.90	4.62(s,2H,CH ₂ -C=N),	(35)	(35)	(16

Table V

Table ¥ (continued)

Ma.	۹r	Yield %	Mp ۲°	Molecular Formula	Analyses Calod&Found			1 _{Η-ΝαΓ} (δ) (CDCl _z)	Ms (m/z) (Relative intensity)			
		 -	(a)		с	н	N					
11ь	₽−₢₦ _ᡱ ₢ _₲ ₦₄	67.9	147-149	с ₂₆ н ₂₂ N4	79.97	5.68	14.35	2.40(s,3H,CHz),	390	389	299	
			HeOH		79.80	5.30	14.00	4.43(d, J=0.4Hz, 2H, CHPh), 4.61	(91)	(100)	(24	
								(s,2H,CH ₂ -C=N),7.40(m,	274	273	272	
								15H,Aromatic H,=CH),	(10)	(50)	(2)	
									116	115	9	
									(21)	(23)	(50	
11c	P-CH30C6H4	82.1	150-152	с _{26^н22^N40}	76.82	5.46	13.79	3.85(s,3н,0СН ₃),4.44	406	405	299	
			EtOH		76.80	5.50	13.80	(d, J=0.4Hz,2H,CH2-Ph),4.62	(88)	(100)	(17	
								(s,2H,CH ₂ -C=N),7.38	273	272	141	
								(m,15H,Aromatic H,=CH).	(57)	(16)	(1)	
(a) so	lvent of cry	stalliza	tion						140	91		
									(11)	(31)		

ACKNOWLEDGEMENT

The authors are indebted to Prof. G.H. Labib for his encouragement. They also thank Professor Hans Zimmer (Department of Chemistry, University of Cincinnati, USA) for the mass spectra of compounds 10_{a-c} and 11_{a-c} .

REFERENCES AND NOTES

- J.D. Albright, D.B. Moran, W.B. Wright, Jr., J.B. Collins, B. Bear, A.S. Lhppa, and E.N. Greenblatt, <u>J. Med. Chem.</u>, 1981, <u>24</u>, 592.
- H.I. Yamamura, T. Mimaki, S.H. Yamamura, W.D. Horst, M. Morelli, G. Bantz, and R.A.O. Brien, <u>Eur. J. Pharm.</u>, 1982, <u>77</u>, 351.
- D.B. Moran, J.P. Dusza, and J.D. Albright, US Patent 4, 260, 765 (1981) (Chem. Abst., 1973, 78, 43468m).
- G. Szilagyi, E. Kasztreiner, P. Matyus, and K. Czako, <u>Synth. Commun.</u>, 1981, <u>11</u>, 835.
- J. Kosary, E. Kasztreiner, A. Lazar, and M. Soti, <u>Acta Pharm. Hung.</u>, 1982, 52, 217.
- 6. P. Cordier, <u>Ann. Pharm. Fr.</u>, 1964, <u>22</u>, 229.
- 7. P. Francavilla and F. Lanria, <u>J. Heterocyclic Chem.</u>, 1971, <u>8</u>, 415.
- 7_c was left at room temperature for 4 days and the oily product produced after acidification was triturated with benzene to give colourless crystals.

Received, 8th May, 1989