THE SYNTHESIS AND CHEMICAL PROPERTIES OF 11H-CYCLOHEPT[b]INDEN0[2,1-<u>d</u>]PYRROLE¹)

Makoto Nitta,* Yukio Iino, and Kaoru Kamata Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169, Japan

<u>Abstract</u>—The reaction of N - (3-indenyl)iminotributylphosphoranewith 2-chlorotropone gave novel 11H-cyclohept[<u>b</u>]indeno[2,1-<u>d</u>]pyrrole,which was converted to the corresponding ketone and alcohol.The chemical properties of the three compounds were studied.

Azaazulenes²) have received considerable interest, particularly in comparison with the chemistry of azulenes, and have played a major role in the advancement of our understanding of cyclic conjugation.³) The tetracyclic system containing the 1azaazulene nucleus, 11H-cyclohept[b]indeno[2,1-d]pyrrole (<u>1</u>) is of interest as a precursor of fully conjugated systems such as an anion (A) (18 π electron system) and a cation (B) (16 π electron system). The synthesis of 11H-indeno[2,1-<u>a</u>]azulene (<u>2</u>), which is a carbocyclic analogue of <u>1</u>, has been accomplished previously.^{4,5}) Although the methodology constructing azulenes condensed with several ring systems has been reported,⁶) no convenient synthesis of 1-azaazulenes condensed with various ring systems has been explored. Previously, the present authors have found that the reaction of 2-chlorotropone with N-vinyliminophosphoranes resulted in the formation of 1-azaazulenes⁷) in a single step. This communication will describe a simple preparation and chemical properties of

<u>1</u>: X = N; <u>2</u>: X = CH

(A): * = -; (B): * = +

1. Our synthetic strategy was at first to obtain N-(3indenyl)iminotributylphosphorane (4). The compound $\underline{4}^{(8,9)}$ was easily prepared by the Staudinger reaction¹⁰⁾ of 3-azidoindene (3)¹¹⁾ with tributylphosphine in anhydrous

benzene at room temperature for 1 h. Since the compound $\frac{4}{4}$ was not stable and hydrolyzed to give 1-indanone under workup conditions, 7,12) the synthetic reaction was carried out conveniently in one-pot procedure without isolation of 4. When a solution of 3 (3 mmol) and tributylphosphine (3 mmol) in anhydrous benzene (35 ml) was stirred at room temperature, the reaction proceeded easily with the complete disappearance of 3 within 1 h. To this reaction mixture was added 2chlorotropone (3 mmol) and triethylamine (3 mmol), and the mixture was heated under reflux for 3 h. The product was then separated through column chromatography on alumina by using chloroform-ethyl acetate (4/1) as eluent to give 1 as reddish purple needles (from ethanol), mp 184-185 °C, in a 64% yield. The plausible reaction pathways are shown in Scheme 1.7,12) The initial step is an enamine type alkylation of $\underline{4}$ onto 2-chlorotropone followed by the hydrogen migration to give the intermediate 5. Then the intramolecular aza-Wittig reaction of 5 gives $\underline{6}$, which undergoes the dehydrochlorination to give $\underline{1}$. On treatment of 1 with potassium t-butoxide in MeOD at 0 °C, the methylene hydrogens of <u>1</u> was exchanged with deuterium to give <u>7</u> in a 60% yield after purification by tlc. Thus, the formation of an anion, which is formally isoelectronic to (A), was indicated. On the other hand, the treatment

	<u>1</u>	<u>8</u>	<u>9</u>
λ_{\max} (log ϵ)			
in EtOH	292 (4.46), 312 (4.32),	260 (4.05), 312 (4.71),	291 (4.53), 307 (4.48),
	324 (4.40), 351 (3.84),	353 (3.98), 427 (3.37),	321 (4.55), 351 (3.89),
	369 (3.81), 490 (3.44),	455 (3.45), 477 (3.42),	369 (3.86), 485 (3.58),
	514 (3.41),	505 (sh, 3.14)	506 (3.56),
	553 (sh, 3.03)		543 (sh, 3.23)
in 10%	285 (sh, 4.42),	259 (4.29), 302 (4.79),	284 (sh, 4.27),
H_2SO_4	308 (4.62), 458 (4.15),	431 (3.99), 452 (3.99),	307 (4.46), 459 (4.11),
	502 (sh, 3.79)	482 (sh, 3.67)	502 (sh, 3.64)
in conc.	305 (4.70),	262 (4.57), 303 (4.30),	309 (4.48),
H ₂ SO ₄	440 (sh, 4.08),	366 (3.97),	448 (sh, 4.09),
	459 (4.15),	410 (sh, 3.61),	464 (4.12),
	485 (sh, 3.92)	435 (3.46)	496 (sh, 3.83)
δ (ppm)			
in CDCl ₃	3.90 (2H, s, H-11),	7.26-7.48 (2H, m, H-2,3)	5.60-6.18 (2H, br,
	7.30-7.75 (6H, m,	7.50-7.78 (5H, m,	H-11 and hydroxyl),
	H-1,2,3,7,8,9),	H-1,4,7,8,9)	7.33-7.52 (2H, m, H-2,3),
	8.07-8.20 (1H, m, H-4),	8.42-8.66 (2H, m, H-6,10),	7.55-7.93 (5H, m,
	8.20-8.39 (1H, d,		H-1,4,7,8,9),
	J= 9.2 Hz, H-10),		8.38-8.63 (2H, m, H-6,10)
	8.50-8.67 (1H, m, H-6)		
in CDCl ₃ -	4.08 (2H, s, H-11),	7.48-7.96 (4H, m,	5.96 (1H, s, H-11),
CF₃CO₂H	7.30-7.81 (3H, m,	H-1,2,3,4),	7.54-8.04 (4H, m),
	H-1,2,3),	8.16-8.50 (3H, m,	H-1,2,3,4),
	7.81-8.36 (4H, m,	н-7,8,9)	8.26-8.55 (3H, m,
	H-4,7,8,9),	8.96-9.22 (2H, m, H-6,10),	H-7,8,9),
	8.58-8.98 (2H, m, H-6,10))	8.92-9.18 (2H, m, H-6,10)

Table 1. The uv and ¹H-nmr spectral data of 1, 8, and 9

of <u>1</u> dissolved in dichloromethane with catalytic amount of chromium trioxide and t-butyl hydroperoxide¹³) afforded 11H-cyclohept[<u>b</u>]indeno[2,1-<u>d</u>]pyrrol-11-one (<u>8</u>)⁸) as orange needles (from ethanol), mp 203-204 °C, in a 79% yield. On treatment with sodium borohydride in methanol, <u>8</u> was reduced to give 11-hydroxy-11H-cyclohept[<u>b</u>]indeno[2,1-<u>d</u>]pyrrole (<u>9</u>)⁸) as red needles (from ethanol), mp 178-179°C, in a 47% yield.

The ¹H-nmr and uv spectral data of 1, 8, and 9 are appropriate for their structures (Table 1). The compound 1 gave 10 $(Y=BF_4)^{8,14}$ in 94% yield on treatment with tetrafluoroboric acid. The uv spectra of 1 in 10% and conc. sulfuric acid are almost identical with that of 10 (Y=BF₄) in acetonitrile. This finding and the 1 H-nmr spectrum of $\underline{1}$ in CDCl₃-CF₃CO₂H, showing a downfield shift of all the signals, indicate that <u>1</u> exists in a protonated azaazulenium ion 10 in acidic media. The spectral properties of 9, showing a similarity to those of 1, imply the existence of 11 in acidic media. The protonation occurs at the nitrogen atom, and no dehydroxylation leading to (B) (16 π electron system) took place even in conc. sulfuric acid. In addition, the spectral properties of $\underline{8}$ in acidic media exhibited a similar behavior to those of <u>1</u> and <u>9</u>. The uv spectrum of <u>8</u> in 10% sulfuric acid is very similar to that of 13.¹⁵) These findings indicate that $\underline{8}$ exists in a structure $\underline{12}$, protonated at the nitrogen atom, but not at the carbonyl oxygen. However, the uv spectrum of $\underline{8}$ in conc. sulfuric acid is markedly different from those in ethanol or 10% sulfuric acid, and it is similar to that of 2-phenyl-1-indenone.¹⁶) This fact suggests that $\underline{8}$ is doubly protonataed at the nitrogen atom, but not at both nitrogen and carbonyl oxygen, and it exists in a structure 14 in conc. sulfuric acid. We believe that the foregoing methodology has considerable potential for the preparation of 1-azaazulenes condensed with various ring systems.

The preparation and synthetic applications of N-cycloalkenyliminophosphoranes are in progress.

ACKNOWLEDGMENT

This work was supported by an Annual Project organized by Waseda University, 1987.

REFERENCES

- Part 12 of the reaction of N-vinyliminophosphoranes. Part 11: M. Nitta and Y. Iino, <u>J. Chem. Soc., Perkin Trans.</u> 1, in submission.
- 2. For a recent review; T. Nishiwaki and N. Abe, Heterocycles, 1981, 15, 547.
- 3. D. Lewis and D. Peters, <u>"Facts and Theories of Aromaticity,"</u> Macmillan Press London, 1975; L. T. Scott, M. A. Minton, and M. A. Kirms, <u>J. Am.</u> <u>Chem. Soc.</u>, 1980, <u>102</u>, 6311; and references cited therein.
- 4. R. S. D. Mittal, S. C. Sethi, and Sukh Dev, <u>Tetrahedron</u>, 1973, <u>29</u>, 1321.
- 5. A. Chen, M. Yasunami, and K. Takase, <u>Tetrahedron Lett.</u>, 1974, 2581.
- 6. P. W. Yang, M. Yasunami, and K. Takase, <u>Tetrahedron Lett.</u>, 1971, 4275.
- 7. M. Nitta, Y. Iino, E. Hara, and T. Kobayashi, <u>J. Chem. Soc., Perkin Trans.</u> <u>1,</u> 1989, 51.
- Elemental analyses or high resolution mass spectral data are satisfactory for all new compounds described in this paper.
- 9. ¹H-Nmr (C_6D_6) δ =0.65-1.85 (27H, m), 3.37 (2H, broad s), 4.97 (1H, broad s), 6.70-7.50 (3H, m), 7.72-7.97 (1H, m).
- 10. Yu. G. Gololobov, I. N. Zhumurova, and L. F. Kasukhin, Tetrahedron, 1981, 37, 437.
- 11. A. Hassner and F. W. Fowler, J. Org. Chem., 1968, 33, 2686.
- M. Nitta and T. Kobayashi, <u>Chem. Lett.</u>, 1986, 1549; Y. Iino and M. Nitta, <u>Bull. Chem. Soc. Jpn.</u>, 1988, <u>61</u>, 2235.
- 13. J. Muzart, <u>Tetrahedron Lett.</u>, 1987, <u>28</u>, 2131.
- 14. Orange prisms (from CH_3CN -ethyl acetate), mp 220 °C (decomp); λ_{max} (log ϵ) in CH_3CN : 289 (sh, 4.25), 307 (4.39), 465 (3.86), 502 (sh, 3.53).
- 15. Orange prisms (from CH₃CN-ethyl acetate); mp 250 °C (decomp); λ_{max} (log ϵ) in CH₃CN: 306 (4.72), 410 (sh, 3.58), 436 (sh, 3.78), 459 (3.90), 485 (sh, 3.74).
- 16. P. H. Lacy and C. C. Smith, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 1</u>, 1974, 2617: λ_{max} (log ε) in MeOH: 261 (4.51), 275 (sh, 4.32), 300 (sh, 3.24), 430 (3.23).

Received, 5th June, 1989