$\rm C_3-ACYLATION$ OF INDOLES VIA $\rm C_3-LITHIATION$ directed by the $\rm C_2-CARBOXYL~GROUP^1$

Yuusaku Yokoyama, Masahiko Uchida, and Yasuoki Murakami

School of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274, Japan

<u>Abstract</u> - N-Protected indole-2-carboxylic acid (<u>1</u>) was lithiated at the 3-position using *sec*-BuLi in the presence of an additive (HMPA) in THF, and then acylated at that position regioselectively by subsequent treatment with ester or DMF in moderate yields.

As C_3 -acylation is one of the most important reactions in indole chemistry, we have continuously studied^{2,3} it using ethyl indole-2-carboxylate in acidic condition. However, these methods have some limitations that strongly electronegative acyl groups, such as chloroacetyl one, were introduced at 3-position in only poor yields² or substituted preferentially in the benzene moiety.³ Thus, we have further examined regioselective C_3 -acylation and now report the first regioselective C_3 -acylation of indole *via* C_3 -lithiation directed by the C_2 -carboxyl group. A solution of 1-methoxymethylindole-2-carboxylic acid ($\underline{1}$, 0.5 mmol) and HMPA (1.3 mmol) in THF was treated with *sec*-BuLi (1.3 mmol) at -78°C for 20 min. To the solution containing resulting intermediate $\underline{2}$ was added electrophile (1.5 mmol), and then the whole was allowed to react at room temperature for the period shown in the Table. After usual work-up procedure the resulting carboxylic acid was converted to corresponding methyl ester ($\underline{3}$) with CH₂N₂ for purification. The result is shown in the Table. The yield of the deuteration (run 1) was calculated by multiplication of chemical yield (84%) and D% (76%) measured by the mass spec-

Run	electrophile	hile Reaction Product (3)		uct (<u>3</u>)	s.m. ^a (<u>3</u> , X=H)
		time	X=	Yield (from $\underline{1}$)	Recovery
1	D ₂ 0	30 min	-D	648	20% ^b
2	DMF	60 min	-СНО	60%	17%
3	с _{2^н5} соос ₂ н ₅	30 min	-coc ₂ ^H 5	488	35%
4	C1CH2COOC2H5	60 min	-сосн ₂ сі	41%	43%

Table. C₃-Acylation of Indole *via* C₃-Lithiation $(1 \rightarrow 3)$

a) A methyl ester of starting material (1)

b)Estimated by the chemical yield and the product yield

trum. All reactions proceeded at the 3-position exclusively.

There have been only limited reports^{4,5,6} on C_3 -lithiation of indoles, while the C_2 -lithiation and its application have been studied extensively.⁷ Present C_3 -acylation of indole is based on the first C_3 -lithiation directed by C_2 -carboxyl group, being developed on the basis of two directed lithiations, C_3 -carboxylation in benzofuran-2-carboxylic acid⁸ and C_2 -acylation in indole-1-carboxylic acid.⁹ The method is complementary with our previous method³ in regioselectivity and is superior to the C_3 -acylation *via* lithiation directed by C_2 -carboxamide⁴ in wide applicability. Therefore it can be applied to syntheses of various kinds of C_3 -substituted indoles hardly prepared by other methods.

REFERENCES

1	This paper is part 21 of "Synthetic studies of indoles and related compounds."					
	Part 20:Y. Murakami, H. Takahashi, Y. Nakazawa, M. Koshimizu, T. Watanabe,					
	and Y. Yokoyama, Tetrahedron Lett., 1989, 30, 2099.					
2	Y. Murakami, M. Tani, K. Tanaka, and Y. Yokoyama, <u>Chem. Pharm. Bull.</u> , 1985,					
	<u>33</u> , 4707.					
3	Y. Murakami, M. Tani, K. Tanaka, and Y. Yokoyama, <u>Chem. Pharm. Bull.</u> , 1988,					
	<u>36</u> , 2023.					
4	D.A. Johnson and G.W. Gribble, <u>Heterocycles</u> , 1986, <u>24</u> , 2127.					
5	D.L. Comins and M.O. Killpack, <u>J. Org. Chem.</u> , 1987, <u>52</u> , 104.					
6	M.G. Saulnier and G.W. Gribble, <u>J. Org. Chem.</u> , 1983, <u>48</u> , 2690.					
7	H.W. Gschwend and H.R. Rodriguez, Org. Reactions, 1979, 26, 1					
8	A.M.B.S.R.C.S. Costa, F.M. Dean, M.A. Jones, D.A. Smith, and R.S. Varma,					
	J. Chem. Soc., Chem. Commun., 1980, 1224.					
9	A.R. Katritzky, H. Faid-Allah, and C.M. Marson, <u>Heterocycles</u> , 1987, 26, 1333.					

Received, 12th June, 1989