SYNTHESIS OF 3'-(1,2,3-TRIAZOL-1-YL)-3'-DEOXYTHYMIDINES Dieter Häbich* and Wolfgang Barth BAYER AG, CWL-Pharma, Postfach 10 17 09, 5600 Wuppertal-1, FRG Manfred Rösner HOECHST AG, Pharma-Synthese, Postfach 800320, 6230 Frankfurt/M.-80, FRG

<u>Abstract</u> - The synthesis of various 3'-(1,2,3-triazol-1-yl)-3'-deoxy-thymidines 3 and their regioisomers 4 by 1,3-dipolar cycloaddition of AZT 1 with alkynes 2 is described.

Unnatural 2',3'-dideoxynucleosides such as 3'-azido-3'-deoxythymidine (AZT, 1),¹ 3'-deoxy-3'-fluorothymidine,² and 2',3'-dideoxycytidine³ are potent agents against the human immunodeficiency virus (HIV) which gives rise to the acquired immunodeficiency syndrome (AIDS).⁴ After conversion to the 5'-triphosphates by cellular kinases, these compounds inhibit the HIV-reverse transcriptase (RT). They act either as competitive inhibitors or as chain terminators of viral DNApolymerization due to the lack of the 3'-hydroxy group.⁵ To date only AZT (1) is marketed for AIDS therapy. However, long-term treatment limitations arise from its inherent bone marrow toxicity and the appearance of AZT-resistant mutants,⁶ thus making it necessary to search for novel analogs. The azido-function plays an undetermined role in the activity of 1, which is apparently not limited to its stereoelectronic properties, since several isosters show no significant anti-HIV activity.^{2,7}

Our plan was to keep the N_3 -unit as part of a triazole ring in order to determine whether its conservation was essential for activity. Tittensor et al. have used cycloadditions of 5'-azido-5'-deoxythymidine with carbonyl activated alkynes to synthesize triazoles as potential thymidylate kinase inhibitors.⁸

Scheme 1:

We now describe the synthesis of 3'-(1,2,3-triazol-1-yl)-3'-deoxythymidines 3and their regioisomers 4 by 1,3-dipolar cycloaddition of AZT (1) with alkynes 2 (Scheme 1, Table).⁹

Table:

1,3-Dipolar cycloaddition of AZT (1) with alkynes 2 in refluxing DME (Scheme 1) 20

products			time	yield ^a	isomers ^b	mp (°C) ^C	
no.	R ¹	R ²	(h)	(%)	(ratio 3:4)	3	4
- 3a	Н	Si(CH ₃) ₃	20 ^d	92	e	124	
3b	Si(CH ₃) ₃	SO ₂ Ph	20	63	e	244-246	
3c	COOCH	соосна	1	88	-	foam	
3d	COOC, H5	COOC 2H5	2	67	-	1 54	
3e,4e	н	COOCH	3	91	3:1	f	
3f,4f	Н	COOC ₂ H ₅	3	89	3:1	125	223
3g,4g	C ₂ H ₅	соосн	40	74	1:1	f	
3h,4h	$\underline{n} - C_3 H_7$	соосн	40	68	1:1	f	
3i,4i	<u>n</u> -C ₅ H ₁₁	соосн	40	70	1:1	f	
3j,4j	$\underline{n} - C_6 H_{13}$	COOCH	40	65	1:1	f	
3k,4k	снон	COOCH3	20	58	2:1	f	
31,41	снон	COO-PNB ^g	12	90	5:1	f	
3m	сн ₂ он	сн ₂ он	27	36	-	189	
3n,4n	н	сн_он	20	59	3:1	194	186
30	COOH	соон	21	83	-	232-234	
3p,4p	Н	COOH	20	87	4:1	i	
3q,4q	<u>n</u> -C ₃ H ₇	COOH	22	68	1:1	f	
3r	соон	4-NO2-C6H4	15 ^h	48	е	>250	
3s	CONH ₂	CONH ₂	3 ^h	84	-	298	
3t,4t	Н	CONO	24	82	2:1	212	k
3u,4u	Н	4-F-C ₆ H ₄	25 ^h	78	2:1	235-236	k
3v,4v	Н	2-pyridyl	40	76	2:1	200	234

a isolated yield (both isomers)

- b determined by ¹H-nmr
- c uncorrected

d 10 equivalents of TMS-acetylene was used f Isomers were not separated.

^g PNB = p-nitrobenzyl

k isomer not pure

h conditions: 110°C in DMF

¹ Separated isomers were isolated as Na salts and lyophilized.

 $^{\rm e}$ Only one isomer was isolated after work-up,

In a **typical procedure** a stirred solution of AZT (1) (267 mg, 1.0 mmol) and ethyl propiolate (2f) (130 μ l, 1.3 mmol) in 2 ml of anhydrous 1,2-dimethoxyethane (DME) was heated to reflux for 3 h. After completion of the reaction (tlc), the solvent

was removed under reduced pressure and the residue was treated with ether to afford 325 mg (89%) of 3:1 mixture of **3f** and **4f**. Chromatography of the mixture on 27 g of silica gel (1:9 toluene/ethyl acetate) gave 51 mg (15%) of the less polar isomer **4f** as crystals, mp 223°C, Rf = 0.19 (1:9 toluene/ethyl acetate) and 231 mg (66%) of the more polar isomer **3f** as crystals, mp 125°C, Rf = 0.09 (same eluent).

The alkynes $2 ext{ k}$, $10 ext{ 2 l}$, $11 ext{ 2 r}$, $12 ext{ 2 t}$, $13 ext{ 2 u}$ $14 ext{ and } 2 ext{ v}$ ¹⁵ were prepared according to published procedures.

Those unsymmetrical alkynes 2 with substituents R^1 and R^2 of similar steric demand gave intractable 1:1 mixtures of 3 and 4. Monosubstituted alkynes 2 yielded regioisomers 3 and 4 of markedly different chromatographical and spectroscopical properties, thus permitting easy separation and unambiquous structural assignment. As expected, the sterically less congested isomers 3 were predominant. The more polar, major isomers 3 showed a chracteristic downfield shift of the triazole-H and an upfield shift of the H-3' resonances as compared to the less polar, minor isomers 4. As a general rule, the chemical shifts of the triazole-H and H-3' differed by more than 3.0 ppm in isomers 3 and by less than 2.5 ppm in isomers 4. This assignment was confirmed by noe-experiments with both isomers 3n and 4n.

Scheme 2:

Protodesilylation¹⁶ of **3a** (5 eq. HOAc/1.5 eq. $(C_{4}H_{9})_{4}NF/THF/2.5$ h, room temp) afforded triazole **3w** (mp 217°C). This compound could also be synthesized by cyclocondensation¹⁷ of **1** with ethyl vinyl ether (16 h, 100°C) in a pressure vial (Scheme 2). Alkyl substituted triazoles were obtained accordingly by using methyl alkenyl ethers (not shown). None of the compounds synthesized exhibited appreciable activity in HIV-1 infected CEM-V and MT-2V cells, nor did they inhibit syncytium formation in infected human peripheral blood monocytes.

We have recently compared the X-ray structure of triazole 3w to other 3'-modified thymidines and have found that the tetrahydrofuran ring of inactive 3w, contrary to active 1, adopts a ²E-conformation.¹⁸

Its inactivity might be due to either lack of phosphorylation by cellular kinases or low affinity of the 5'-triphosphate to the HIV-RT. We have thus synthesized from 3w the corresponding 5'-triphosphate 5 by modifying a literature procedure¹⁹ [1. $POCl_3/PO(OCH_3)_3/20$ h, 0°C; 2. $[(C_4H_9)_3NH]_2P_2O_7/DMF/25$ min, 0°C; 3. Dowex 50W-X4 (H⁺ form); 4. NaOH, pH 7.4] and found that it inhibits HIV-RT in an exogenous assay. It seems as if the reverse transcriptase has less severe steric requirements towards substrates than the thymidine kinases.

ACKNOWLEDGEMENTS

We thank Drs. J. P. Bader (National Cancer Institute, USA), A. Paessens (BAYER AG) and I. Winkler (Hoechst AG) for performing the biological assays.

REFERENCES AND NOTES

- H. Mitsuya, K. J. Weinhold, P. A. Furmann, M. H. St. Clair, S. N. Lehrmann, R. C. Gallo, D. Bolognesi, D. W. Barry, and S. Broder, <u>Proc.Nat.Acad.Sci.</u> <u>USA</u>, 1985, 82, 7096.
- P. Herdewijn, J. Balzarini, E. De Clercq, R. Pauwels, B. Masanori, S. Broder, and H. Vanderhaege, J.Med.Chem., 1987, 30, 1270.
- 3. H. Mitsuya and S. Broder, Proc.Nat.Acad.Sci. USA, 1986, 83, 1911.
- 4. For a recent review, see: E. De Clercq, Trends Pharmacol. Sci., 1987, 8, 399.
- 5. Y.-C. Cheng, G. E. Dutschman, K. F. Bastow, M. G. Sarngadharan, and R. Y. C. Ting, <u>J.Biol.Chem.</u>, 1987, 262, 2187.
- 6. B. A. Larder, G. Darby, and D. D. Richman, Science, 1989, 243, 1731.
- 7. S. L. Schreiber and N. Ikemoto, <u>Tetrahedron Lett.</u>, 1988, 29, 3211;
 M. Maillard, A. Faraj, F. Frappier, J. C. Florent, D. S. Gierson, and
 C. Moneret, <u>Tetrahedron Lett.</u>, 1989, 30, 1955, J. Fiandor, D. M. Huryn,
 B. Sluboski, L. J. Torado, and S. Tam; 8th International Round Table Meeting
 on Nucleosides, Nucleotides and Their Biological Applications (poster P 34),
 Orange Beach, Alabama, USA, October 2-5, 1988.

- J. J. Baker, P. Mellish, C. Riddle, A. R. Somerville, and J. R. Tittensor, J.Med.Chem., 1974, 17, 764.
- 9. A recently presented poster following the same strategy prompted us to report a selection of our results: P. Wigerinck, A. Van Aerschot, P. Claes, J. Balzarini, E. De Clercq, and P. Herdewijn, Symposium, New therapeutic developments in human infectious deseases (poster P 9), University of Antwerp, April 28, 1989.
- 10. R. A. Earl, Organic Syntheses, 1981, 60, 81.
- 11. D. Häbich and W. Hartwig, <u>Tetrahedron</u>, 1984, 40, 3667.
- 12. J. Chenault and J. F. E. Dupin, Synthesis, 1987, 498.
- 13. J. P. Francois and M. W. Gittos, Synth. Commun., 1979, 9, 741.
- I. Lalezari, A. Shafiee, and M. Yalpani, <u>Angew. Chem.</u>, <u>Int. Ed. Engl.</u>, 1970, 9, 464.
- 15. D. E. Ames, D. Bull, and C. Takundwa, Synthesis, 1981, 364.
- 16. D. Häbich and F. Effenberger, <u>Synthesis</u>, 1978, 755, and references cited therein.
- 17. C. E. Olsen, Acta Chim.Scand., 1974, B 28, 425.
- 18. W. Barth, D. Häbich, A. Jensen, L. Born, and Y. Hayauchi, 4th Cyprus Conference on New Methods in Drug Research (poster 17), Paphos, Cyprus, May 21-27, 1989, (publication in preparation).
- L. Vrang, H. Bazin, G. Remaud, J. Chattopadhyaya, and B. Öberg, <u>Antiviral</u> Res., 1987, 7, 139
- 20. All new compounds gave ir, ¹H-nmr (300 MHz), mass spectra (ms) and/or combustion analyses consistent with their assigned structures. Selected data: 3a: Nmr (CD₃OD) δ 0.33 (s, 9H, Si-CH₃); 1.90 (s, 3H, CH₃); 2.75 and 2.90 (m, 2H, H-2'); 3.76 and 3.90 (AB, J=13 Hz, 3.5 Hz, 2H, H-5'); 4.36 (m, 1H, H-4'); 5.46 (m, 1H, H-3'); 6.50 (t, J=7 Hz, 1H, H-1'); 7.92 (s, 1H, H-6); 8.13 (s, 1H, H-5 triazole). Ms (DCI, NH₃) m/z 366 (M+H)⁺. Uv (MeOH) λ_{max} 264 nm. 3f: Nmr (DMSO-d₆) δ 1.32 (t, J=7.5 Hz, 3H, CH₂CH₃); 1.82 (s, 3H, CH₃); 2.6-2.8 (m, 2H, H-2'); 3.78 (m, 2H, H-5'); 4.26 (m, 1H, H-4'); 4.32 (q, J=7.5 Hz, 2H, CH₂CH₃); 5.78 (t, J=5 Hz, 1H, CH₂OH); 5.46 (m, 1H, H-3'); 6.43 (t, J=7 Hz, 1H, H-1'); 7.83 (s, 1H, H-6); 8.99 (s, 1H, H-5 triazole); 11.37 (s, 1H, NH). Ms (DCI, NH₃) m/z 366 (M+H)⁺, 383 (M+NH₄)⁺.

4f: Nmr (DMSO-d₆) δ 1.33 (t, J=7.5 Hz, 3H, CH₂<u>CH₃</u>); 1.82 (s, 3H, CH₃); 2.6-2.8 (m, 2H, H-2'); 3.75 (m, 2H, H-5'); 4.3-4.4 (m, 3H, <u>CH₂CH₃, H-4'); 5.38 (t, J=5 Hz, 1H, CH₂<u>OH</u>); 5.92 (m, 1H, H-3'); 6.53 (t, J=7 Hz, 1H, H-1'); 7.92 (s, 1H, H-6); 8.35 (s, 1H, H-4 triazole); 11.35 (s, 1H, NH). Ms (DCI, NH₃) m/z 366, (M+H)⁺.</u>

3s: Nmr (DMSO- \underline{d}_6) δ 1.81 (s, 3H, CH₃); 2.6-2.8 (m, 2H, H-2'); 3.75 (m, 2H, H-5'); 4.34 (m, 1H, H-4'); 5.36 (t, J=4.5 Hz, 1H, CH₂<u>OH</u>); 6.16 (m, 1H, H-3'); 6.55 (t, J=7 Hz, 1H, H-1'); 7.94, 8.16, 8.20, 10.27 (bs, 1H, each, CONH₂); 8.50 (s, 1H, H-6); 11.52 (bs, 1H, NH). Ms (FAB) m/z 364 (M+H)⁺. 3w: Ir (KBr) 3481, 1694, 1471, 1406, 1279, 1138, 1095, 1069 cm⁻¹. Nmr (DMSO- d_6) δ 1.82 (s, 3H, CH₃); 2.6-2.8 (m, 2H, H-2'); 3.62 and 3.72 (AB, J=15 Hz, 4 Hz, 2H, H-5'); 4.21 (m, 1H, H-4'); 5.28 (bs, 1H, OH); 5.41 (m, 1H, H-3'); 6.44 (t, J=7 Hz, 1H, H-1'); 7.82 and 7.84 (s, 2H, H-6, H-triazole); 8.32 (s, 1H, H-triazole); 11.36 (bs, 1H, NH). Ms (EI) m/z 293 (M)⁺. Uv (MeOH) λ_{max} 206, 264 nm. [α]²⁰_D = -12.6° (c=0.935, MeOH). 5: (Na-salt) Rf=0.05 (4:1 acetonitrile/water): Ir (KBr) 3433, 1701, 1473,

5: (Na-salt) Rr=0.05 (4:1 acetonitrile/water): If (RB) 5435, 1701, 1475, 1286, 1158, 1104, 995, 901, 750 cm⁻¹. Nmr (D₂O) δ 2.00 (s, 3H, CH₃); 2.88 (m, 2H, H-2'); 4.32 (m, 2H, H-5'); 4.70 (under solvent H-4'); 5.71 (m, 1H, H-3'); 6.63 (t, J=7 Hz, 1H, H-1'); 7.90 (bs, 2H, H-triazole, H-6); 8.22 (s, 1H, H-triazole). Ms (FAB-) m/z 576 (M-Na)⁻, 554 (M-2Na)⁻.

Received, 10th Augsut, 1989