TOTAL SYNTHESIS OF THE PENTACYCLIC ALKALOID ASCIDIDEMIN 1

Franz Bracher

Institut für Pharmazeutische Chemie der Philipps-Universität Marbacher Weg 6, D-3550 Marburg (Fed.Rep.of Germany)

<u>Abstract</u> - The antileukemic alkaloid ascididemin ($\underline{1}$) was prepared from quinoline-5,8-quinone ($\underline{4}$) by oxidative amination with o-aminoaceto-phenone ($\underline{5}$), followed by acid catalysed cyclisation and subsequent one pot annelation of ring E.

Ascididemin ($\underline{1}$), a pentacyclic alkaloid with antileukemic activity, was isolated by Kobayashi and co-workers² from the Okinawan tunicate <u>Didemnum sp.</u> in low yield (0.006%). The structure was elucidated on the basis of spectroscopic data. Recently de Guzman and Schmitz³ found out that reductive debromination ($\underline{H}_2/Pd/EtOH$) of bromoleptoclinidinone gave a compound identical with ascididemin ($\underline{1}$). On the basis of these results the structure of bromoleptoclinidinone had to be revised from $\underline{3}$ to $\underline{2}$.

In this paper we report the first total synthesis of ascididemin ($\underline{1}$). Quinoline-5,8-quinone ($\underline{4}$), prepared by dichromate oxidation of 5-amino-8-hydroxy-quinoline,⁴ was converted to the diaryl amine $\underline{6}^5$ by oxidative amination with o-aminoacetophenone ($\underline{5}$) in the presence of CeCl $_3$ and air.⁶ The regionselectivity of the amination is most certainly due to the complexation of the quinolinequinone with the cerium ions.^{6,7}

Cyclisation of $\underline{6}$ to the tetracyclic quinone $\underline{7}^8$ proceeded smoothly on heating with conc. H_2SO_4 in glacial acetic acid. The formation of ring E was accomplished by means of a one pot annelation method recently developed in this laboratory in the course of the synthesis of the alkaloids sampangine 10a and eupolauridine. Thus, the reaction of $\underline{7}$ with dimethylformamide diethyl acetal gave enamine $\underline{8}$. Treatment of the crude $\underline{8}$ with NH_4Cl in refluxing acetic acid gave ascididemin ($\underline{1}$). The spectroscopic data obtained for $\underline{1}$ was in accordance with the values published for ascididemin ($\underline{1}$) by Kobayashi 2 and Schmitz. 3

Conditions: a) $CeCl_3 \cdot 7 H_2O$, C_2H_5OH , air, $20^{\circ}C$, 16 h (78%); b) $conc.-H_2SO_A$ -AcOH(1:10), reflux, 10 min (94%);

- c) HC(OC₂H₅)₂N(CH₃)₂, DMF, 120°C, 1 h;
- d) NH_ACl, AcOH, reflux, 1h (59%).

Work is in progress as to the synthesis of the related alkaloid bromoleptoclinidinone (2) following the same strategy.

ACKNOWLEDGEMENT

This work has been supported by the Deutsche Forschungsgemeinschaft, Bonn.

REFERENCES AND NOTES

- Polycyclic aromatic alkaloids, 4. Part 3: F. Bracher, <u>Arch. Pharm. (Weinheim)</u> in press.
- 2. J. Kobayashi, J. Cheng, H. Nakamura, Y. Ohizumi, Y. Hirata, T. Sasaki, T. Ohta, and S. Nozoe, Tetrahedron Lett., 1988, 29, 1177.
- 3. F. S. de Guzman and F. J. Schmitz, Tetrahedron Lett., 1989, 30, 1969.
- 4. Y. T. Pratt and N. L. Drake, J. Am. Chem. Soc., 1960, 82, 1155.
- 5. mp 224-228°C (decomp); 1 H-nmr (400 MHz, CDCl $_{3}$) δ 2.73 (s, 3H), 6.95 (s, 1H), 7.22 (br td, J= 1.5 and 7.5 Hz, 1H), 7.62 (br td, J= 1.5 and 7.5 Hz, 1H), 7.67 (m, 2H), 8.00 (dd, J=1.5 and 8 Hz, 1H), 8.51 (dd, J= 1.8 and 8 Hz, 1H), 9.07 (dd, J= 1.8 and 4.7 Hz, 1H), 11.37 (br s, NH); ms (m/z, %) 292 (M $^{+}$, 100), 274 (41), 263 (26), 250 (48), 249 (39), 235 (17), 221 (13), 186 (45); hrms 292.0891 ($C_{17}H_{12}N_{2}O_{3}$ requires 292.0848).
- 6. Y. T. Pratt, J. Org. Chem., 1962, 27, 3905.
- Regioselective oxidative aminations of quinolinequinones were also conducted in the presence of Ce(SO₄)₂ or NiCl₂: E. A. Ibrahim, I. Chaaban, and S. M. El-Khawass, <u>Pharmazie</u>, 1976, <u>31</u>, 405; K. Yoshida, M. Yamamoto, and M. Ishiguro, Chem. Lett., 1986, 1059.
- 8. mp 240-248°C (decomp); 1 H-nmr (400 MHz, CDCl $_{3}$) δ 3.34 (s, 3H), 7.77-7.83 (m, 2H), 7.95 (ddd, J= 1.4, 6.9 and 8,5 Hz, 1H), 8.40 (dd, J= 0.8 and 8.5 Hz, 1H), 8.46 (dd, J= 0.8 and 8.5 Hz, 1H), 8.74 (dd, J= 1.8 and 7.8 Hz, 1H), 9.17 (dd, J=1.8 and 4.6 Hz, 1H); ms (m/z, %) 274 (M $^{+}$, 100), 246 (27), 218 (8), 217 (10), 216 (7), 190 (6); hrms 274.0756 (C_{17} H $_{10}$ N $_{2}$ O $_{2}$ requires 274.0742).
- 9. For related intramolecular acylations of arylaminonaphthoquinones see:
 - a) W. S. Lesnianski, Ber., 1918, 51, 695;
 - b) I. M. Roushdi, A. A. Mikhail, and I. Chaaban, Pharmazie, 1976, 31, 406.
- 10. a) F. Bracher, Liebigs Ann. Chem., 1989, 87;
 - b) F. Bracher, Arch. Pharm. (Weinheim), 1989, 322, 293.

Received, 18th Augsut, 1989