CATALYTIC ASYMMETRIC SYNTHESIS OF 2- AND 3-FURYLCARBINOLS

Kenso Soai,* Yasuhiro Kawase, and Seiji Niwa Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Shinjuku, Tokyo 162, Japan

Abstract---Optically active 2- and 3-furylcarbinols were synthesized in high enantiomeric **excesses** (up to 94% *e.e.)* by the enantioselective addition of dialkylainc reagents to 2- or 3 -furaldehydes using N, N-dibutylnorephedrine and (S) **diphenyl(l-methylpyrrolidin-2-yl)methanol** as chiral catalysts.

Optically active furylcarbinols (2) form an important class of compounds, because fury1 group is recognized as substrate for the facile introduction of further functionalities.^{1,2a,4b} Thus asymmetric synthesis of (2) is of current interest. Recently Sammes and Thetford prepared $(S)-1-(2-fury1)$ ethanol $(2a)$, a key intermediate of L-daunosamine, $2a$ by asymmetric reduction of 2-acetylfuran using chiral reducing reagent [lithium borohydride - $(\underline{S}, \underline{S}^+) - \underline{N}, \underline{N}'$ '-dibenzoylcystine-tertbutyl alcohol].³ However, (2) which is prepared by either chemical² and biochemical⁴ asymmetric reduction has only limited structure. On the other hand, kinetic resolutions of racemic furylcarbinols often suffer from the low yields of the product (in principle below 50%) or the destruction of the starting material of undesired configuration.^{4, 5}

We report asymmetric synthesis of (2) by catalytic asymmetric carbon - carbon bond forming reaction. When 2-furaldehyde (a) was treated with diethylzinc $(Et₂Zn)$ in hexane at 0 \textdegree C using 5 mol % of $(1 \text{S}, 2 \text{R}) - (-) - \text{N}, \text{N}-$ dibutylnorephedrine $(DBNE)$, \textdegree **(2)-(-)-1-(2-furyl)propanol** (2b) was obtained in 83% isolated yield and in 89% enantiomeric excess **(e.e.). E.e.** was determined with hplc analysis using chiral column. One of the advantages of the present chemical method over biochemical method is the easier access to the opposite enantiomer of (2) . Thus by using $(1\frac{R}{1},$ $2S$)-(+)-DBNE instead of $(1S, 2R)$ -(-)-DBNE, (R) -(+)-(2b) was obtained in 88% *e.e.*

It was also found that (S) -diphenyl(1-methy1pyrrolidin-2-yl)methanol (DPMPM)⁷ and its lithium salt are efficient chiral catalysts in the ethylation of **(la)** to **afford** (\underline{S}) -(2b) in 88 - 92% **e.e.** Butylation of (1a) with \underline{n} -Bu₂Zn occurred in 90% *e.e.*

On the other hand, reaction of 3-furaldehyde (1c) with Et_2Zn using $(1S, 2R)$ -(-)-DBNE (5 mol%) afforded (2e) in 94% **e.e.**

As described, synthetically useful (2) of either **enantiomers** were conveniently prepared in high e.e.'s from (1) and $(R^2)_{2}$ Zn using DBNE or DPMPM as chiral catalysts.

		$Entry^a$ (1) R^2 Catalyst	(2)				
						$\lceil \alpha \rceil_n$ (temp / ^o C, chcl ₃) Yield/Z E.e./Z ^b Config.	
1	\mathbf{a}	Me (S)-DPMPM	$a -17.8^{\circ}$ (28, 7.1)		53	70	$\mathbf{\underline{s}}$
2	\mathbf{a}	Et (S)-DPMPM	b -15.5° (23, 1.2)		94	88	$\underline{s}^{\bf c}$
3 ^d	\mathbf{a}	Et (S)-DPMPM	b -21.5° (27, 1.1)		58	92	$\overline{5}$
4	a.	$Et (S)-DPMPMe$	b -15.7° (32, 1.2)		67	90	$\underline{\mathbf{S}}$
5	\mathbf{a}	Et (-)-DBNE	b -16.8° (27, 2.0)		83	89	$\overline{5}$
6 ^f	\mathbf{a}	Et $(-)$ -DBNE	b -16.1° (27, 1.1)		64	90	$\mathbf S$
7	\mathbf{a}	Et $(+)$ -DBNE	b +17.0 ^o (33, 1.1)		74	88	$\underline{\mathbf{R}}$
8		b Et $(-)$ -DBNE	c -10.2° (29, 1.3)		79	87	\underline{s}^c
9		a $n-Bu$ (-)-DBNE	d -16.7° (24, 1.2)		58	90g	\mathbf{h}
10	C.	Et (-)-DBNE	e -17.0° (30, 1.1)		52	94	h_{-}

Table 1. Catalytic asymmetric synthesis of furylcarbinols (2).

^a Unless otherwise noted, reactions were run in hexane at 0 $^{\circ}$ C for 15 - 37 h. Molar ratio, (1) : catalyst : $({R}^{2})_{2}$ Zn = 1.0 : 0.04 - 0.05 : 2.0. ^b Based on hplc analyses using chiral column (Daicel chiralcel OD, 250 mm; 200-nm **UV** detector). Eluent 0.25% 2-propanol in hexane. Flow rate (m1 / min), retention time (min); for $(S)-(2a)$, 0.4, 205.8 (minor isomer), 218.5 (major isomer), for $(S)-(2b)$, 0.4, 164.2 (minor isomer), 175.1 (major isomer), for (2)-(2c), 0.5, 79.4 (minor isomer), 88.0 (major isomer), for (2e), 0.4, 122.8 (minor isomer), 129.1 (major isomer). **C** Absolute configurations were determined by the correlation with the corresponding $(S)-(-)-\alpha$ -acetoxybutanoic acid [F. Bohlmann and G. Grau, Chem. $Ber.$, 1965, 98, 2608.] prepared by the following sequence: (i) Ac_2O , C_5H_5N ; (ii)</u> NaIO₁, cat. RuCl₃ xH₂O, CCl₁/MeCN/H₂O (2 : 2 : 3) (Ref. 5a and references cited therein). ^d Molar ratio, (1a) : cat. : Et₂Zn = 1.0 : 0.05 : 3.0. ^e Lithium salt of DPMPM (prepared in situ by the reaction with n-butyllithium) was used. ^f Mixed solvent (toluene / hexane, 1 / 1.5 , $\underline{v}/\underline{v}$) was used. ξ Determined by ¹H nmr (100 MHz) analysis of the corresponding acetate using chiral shift reagent $[Eu(hfc)_{3}]$. h Not determined.

EXPERIMENTAL

Typical procedure is exemplified as follows (Table 1, Entry 3). A solution of (n) $(121.5 \text{ mg}, 1.26 \text{ m}$ ol) and (S) -DPMPM $(15.8 \text{ mg}, 0.059 \text{ m}$ ol) in hexane (2 ml)

was stirred for 8 min at 0 oC, then 2.6 ml of 1.0 M hexane solution of Et_2Zn (2.6 mmol) was added during the period of 3 min. After the mixture was stirred for 26 h at 0^{-0} C, 10 ml of water were added to quench the reaction. The white precipitate was filtered off through a pad of Celite. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (5 **X** 6 ml). The combined organic layer was washed with saturated aqueous sodium chloride and dried $(Na₂SO₄)$. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel tlc (eluent, CHCl₃ / AcOEt, 8 / 1, $\underline{v}/\underline{v}$) to afford $(S) - (2b)$ (150.2 mg, 1.19 mmol) in 94% yield.

(S)-(-)- and **(R)-(t)-l-(2-Fury1)propan-1-01** (2b): Ir (neat) 3350, 2950, 2920, 2860, 1500, 1455, 1140 cm⁻¹; ¹H nmr (CDC1₃) 6 0.90 (t, J = 7.0 Hz, 3H), 1.50 -2.16 **(m,** 2H), 2.50 (S, lH), 4.53 (t, J = 7.0 Hz, lH), 6.00 - 6.53 (m, 2H), 7.35 (S, 1H); M^+ calcd for $C_7H_{10}O_2$: 126.0681. Found: 126.0674.

(~)-(-)-1-(5-Methyl-2-furyl)propan-l-01 (2~): **Ir** (neat) 3350, 2960, 2930, 2870, 1560, 1450, 1220, 1015, 780 cm⁻¹; ¹H nmr (CDCl₃) δ 0.93 (t, J = 7.0 Hz, 3H), 1.50 - 2.13 **(m,** 2H), 2.23 **Is,** ?H), 2.50 **(S,** lH), 4.45 (t, J = 6.6 Hz, ?H), 5.85 (br **S,** 1H), 6.02 (d, J = 3.2 Hz, 1H); M⁺ calcd for C₈H₁₂O₂: 140.0838. Found: 140.0845.

(-)-1-(2-Fury1)pentan-1-01 (2d): Ir (neat) 3400, 2970, 2950, 2880, 1510, 1470, 1155, 1020, 740 cm⁻¹; ¹H nmr (CDC1₃) 6 0.65 - 2.16 (m, 9H), 2.83 (s, 1H), 4.60 (t, $J = 6.0$ Hz, 1H), $6.07 - 6.53$ (m, 2H), 7.30 (s, 1H); M⁺ calcd for C₉H₁₀₂: 154.0994, Found: 154,0997.

(-)-l-(3-Fury1)propan-1-01 (2s): **IT** (neat) 3370, 2960, 2930, 2870, 1500, 1160, 1020, 870, 790 cm⁻¹; ¹H nmr (CDC1₃) 6 0.90 (t, J = 6.6 Hz, 3H), 1.26 - 2.10 (m, 2H), 3.00 (s, 1H), 4.47 (t, J = 6.0 Hz, 1H), 6.33 (br s, 1H), 7.28 (s, 2H); M⁺ calcd for $C_7H_{10}O_2$: 126.0681. Found: 126.0679.

ACKNOWLEDGEMENTS

The authors thank Tri Chemical Inc. for a generous gift of $Me₂Zn$.

REFERENCES

1. K. Suzuki, Y. Yuki, and T. Mukaiyama, Chem. Lett., 1981, 1529; S. Pilul, J. Raczko, K. Ankner, and J. Jurczak, J. Am. Chem. Soc., 1987, 109, 3981; P. DeShong, R. E. Waltermine, and H. L. Ammon, ibid., 1988, 110, 1901; Y. Yamaguchi, N. Tatsuta, K. Hayakawa, and K. Kanematsu, J. Chem. Soc., Chem. -, 1989, 470; S. F. Martin and D. E. Guinn, J. Org. Chem., 1987, **52,** 5588; P. DeShong, M.-T. Lin, and J. J. Perez, Tetrahedron Lett., 1986, 27, 2091; F. E. Ziegler and R. T. Wester, **ibid,,** 1984, **25,** 617; K. Mori and H. Kisida, Tetrahedron, 1986, **42,** 5281.

- **2.** (a) P. G. Sammes and D. Thetford, J. Chem. Soc., Perkin Trans. 1, 1988, 111; (b) H. C. Brown, B. T. Cha, and W. S. Park, J. Org. Chem., 1988, **53,** 1271.
- 3. K. Soai, H. Oyamada, T. Yamanoi, and H. Hikima, J. Chem. Soc., Chem. Commun., 1984, 413; 1985, 308. Cf. K. Soai, T. Yamanoi, and H. Oyamada, Chem. Lett., 1984, 251; 1985, 417.
- 4. (a) M. Takeshita, K. Terada, N. Akutsu, S. Yoshida, and T. Sato, Heterocycles, 1987, 26, 3051; (b) D. G. Drueckhammer, C. F. Barbas III, K. Nozaki, C.-H. Wong, C. Y. Wood, and M. **A.** Ciufolini, **J.** Org. Chem., 1988, **53,** 1607.
- 5. (a) Y. Kobayashi, M. Kusakabe, Y. Kitana, and F. Sato, **J.** Org. Chem., 1988, **53,** 1586; M. Kusakabe, Y. Kitano, Y. Kobayashi, and F. Sato, **ibid.,** 1989, 54, 2085; (b) J. M. Brown and I. Cutting, J. Chem. Soc., Chem. Commun., 1985, 578; (c) T. Kametani, M. Tsubuki, Y. Tatsuzaki, and T. Honda, Heterocycles, 1988, **27,** 2107.
- 6. K. Soai, S. Yokoyama, K. Ebihara, and T. Hayasaka, J. Chem. Soc., Chem. Commun., 1987, 1690.
- 7. X. Soai, A. Ookawa, K. Ogawa, and T. Kaba, **J.** Chem. Sac., Chem. Commun., 1987, 467; K. Soai, A. Ookawa, T. Kaba, end K. Ogawa, **J,** Am. Chem. Sac., 1987, 109, 7111.

Received, 29th **August,** 1989