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INVESTIGATION OF STEREQCHEMICAL CONTROL FOR STEROID SIDE CHAIN

BY KINETIC PROTONATION OF TETRONATE DERIVATIVES'

Toshio Honda.* Hironao Takada, Tadashi Katoh, and Masayoshi Tsubuki
Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41,

Shinagawa-ku, Tokyo 142, Japan

Abstract----Stereochemical <control for construction of steroidal
side chains by kinetic protonation of tetronate derivatives
is described. Kinetic protonation of the (22R)-tetronates (4 and
11) proceeded with the inversion of the stereochemistry at the
C-27 position to afford the corresponding (225)-tetronates ( 3
and 12), whereas the same treatment of 9a and 9b gave only a
mixture of sterecnisomers., Fyrthermore, isomerization of the double
bond of 7a and 7b led to the formation of (20E)-olefin(8a) and

(20Z)~olefin (8b)(84:16) with moderate stereoselectivity.

Recently we have developed a stereoselective construction of poly-~hydroxylated

steroid side chain by utilizing tetronic acid derivatives (2) where the

stereochemistry at the C-22 position was determined by chelation control, and
1,2

this strategy was successfully applied to the synthesis of brassinolide,

as described in Scheme 1,
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It would be presumed that (22R)-tetronate(4), the major product in the above
chelation controlled synthesis, could be converted into 3 by a kinetic
protonation of the enolate because of the preferable protonation from the less
hindered side of the conformation A {(Fig. 1) based on the consideration of
als3 3

-strain,” and this isomerization procedure might provide an alternative

synthetic route to ecdysone side chains stereoselectively.
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Figure 1
Thus, thetetronate(4) was treated with an excess of LDA in THF to generate
the corresponding enolate, which on protonation with aqueous Nap80, afforded 3
with the complete inversion of the stereochemistry at the C-22 positicn.
Whereas the same treatment of 3 gave the starting material, and these
results prompted us to investigate the stereoselectivity at the C-22 position
on steroid side chains employing the kinetic protonation of tetronate deri-
vatives., Initially, we examined the kinetic protonation of the tetronates (9
and 11). Preparation of 11 was carried out by adopting the procedure
developed by us.! Addition reaction of the dianien (5){prepared from tetronic

acid and 2.2 equiv. of LDA at -78 °C in dry THF) to the 20-oxosteroid (1)
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followed by treatment of the adducts with chloromethyl methyl ether afforded
the MOM ethers (6a and 6b) ( 77 % yield) as an inseparable mixture in a
ratio of 76 : 26,4 respectively, Dehydration of the tertiary alcohols (6a
and 6b) was achieved by treatment with thionyl chloride and pyridine to
produce the exo-olefins (7a and 7b) ( 36 % yield ) as an inseparable mixture
in a ratio of 76 : 24 % together with the endo-olefins (8a and 8b)

( 68 : 32,% 36 % yield )(Scheme 2),

Hydrogenation of the exo-olefins (7a and 7b) over platinum oxide in ethyl
acetate under medium pressure (7 atm) of hydrogen furnished the tetronates
(9a and 9b)(92 % yield) as inseparable diastereocisomers at the C-22 position
in a ratio of 76:24.% A mixture of the requisite tetronates {9a and Gb)
obtained above was then subjected to the kinetic protonation under the above
reaction conditions, however the expected selectivity was not observed un-
fortunately to give 9a and 9b in almost the same ratio (62:38)4 as that of

the starting material (Scheme 3).
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On the other hand, kinetic protonation of the (22R)-tetronate{ll), obtained

by hydrogenation of 10,1b proceeded with moderate diastereoselectivity to

afford 12 predominantly together with 11 (75:25,4 88 %2 yield) {(Scheme 4).
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Scheme 4
These results indicated that o -substituent on the tetronate would play an
important role in the kinetic protonation of the tetronate, and also the
stereochemical control at the €-22 position could be achieved by the

application of this strategy to the tetronate having a relatively bulky
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@ -substituent. When this protonation was applied to the trienolates derived
from a mixture of 7a and 7b {(76:24), a mixture of (20E)-olefin (8a)
and (20Z)-olefin (8b) was isolated in a ratio of 84:16% in 68.4 % yield

(Scheme 5).
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Interestingly, treatment of 7a and 7b with 1,8-diazabicycle[5.4.0]undec~7~ene
(DBU) in refluxing benzene afforded 8a and 8b in the same ratio as above.a
in 80 % yield. The preferential formatiocn of E~isomer could be rationalized

by assuming that this isomerization occurred via the energetically more

favoured s-trans conformation B than the s~cis isomer C° (Fig. 2).
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In order to determine the stereochemistry at the C-22 position unambiguously,
compounds (9a and 9b) were further converted inte the known 7Y-lactones (15
and 16).6 Hydrogenation of a mixture of the tetronates (9a and 9b) over
rhedium on alumina wunder 7 atm of hydrogen in ethyl acetate afforded the
lactones {13a and 13b) as an inseparable mixture in a ratic of 78 : 22% ig

90% yield, which were then subjected to the elimination of the MOM ethers by
treatment with an excess of lithium cyclohexylisopropylamide in dry THF at 0°C
to give the butenolides (14a and 14b). Finally the hydrogenation of a mixture
of 1l4a and 14b over rhodium on aluming under 7 atm of hydrogen in ethyl
acetate furnished the lactones (13 and 16) in 67.6 and 21.4 % yields,

respectively {(Scheme 6).
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