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Abstract — A novel hetaracyclic N-oxide, pyrimidof5,4-glpteriding-i10-oxide (1), oxygenales
cyclohexene (4] and norbomane (8} under the photochemical conditions to give the corresponding
oxidation products, {5} - (8} and (10) - (12}, respectively. Experimental resuits clearly indicate that
the photochemical oxygenation by (1) invalves a single-electron transfer from the olefins (4} and (8}
to the singlet-excited (1) followad by oxygen-atom transfer rather than oxene mechanism.

Our previous works 1 have demonstrated that a novel heterocyclic N-oxide, pyrimido[5,4-g]pteriding-10-

oxide (1), 2 behaves as an agent for oxygenation or dehydrogenation under the photochemical conditions

depending upon the nature of varicus aromalic substrates.  The special features of the photooxidation by

(1) are cccurrence of the clean reaction not accompanied by appreciable intramolecular rearrangemants of

the N-oxide function 3 and possible involvament of an initial single-slectron-transfer (SET} from the

substrates to {1).

This work was undertaken to obtain mechanistic insights on the photochemistry of (1) upen choice of

simple olefins, cyclohexene {(4)(E%%;,: 2.14 V vs SCE} and norbornene (9)(E%*,,5 : 202 V v SCE), ¢ as

favorite substrates,

In this communication, we wish to present substantial evidence supperting that the photooxygenation by (1)

involves the initial SET from {4) and (9) 1o a singlet-excited (1), which is entirely different from the oxana

mechanism propased for the photooxygenation of olefins by some heteracyclic N-oxides, >57 eg., 3-

msthylpyridazine-2-oxide (3).
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A mixture of {1){5.0 mmol] and (4)[500 mmel] in dry acetonitrile was irradiated with uv-visible light through
a Pyrex filter at ambient temperature under argon atmosphere for 40 min.  During this period, about 40 % of
(1) was deoxygenated to give pyrimido[5,4-g]pteridine (2) almost guantitatively. Cyclohexenol (5),
cyclchexenone (6), epoxycyclohexane (7), and cyclohexarnone (8) were obtained as oxygenatad preducts
in 23 %, 31 %, 2 %, and 2 % yiglds (based on the consumed 1), respactively.  The yields and structures of
these oxygenated products were determinad by gc and ge-ms analyses.

Experiments for the wavelength dependence showed that the farmation of (5) occurs most efficiently by
irradiation with around 365 nm lights which are near the longest uv absorption band of (1[370 nm (e = 2.2 %
10%).  Quantum vield for tha consumption of {1} was 0.014 uadsr irradiation of a solution of {1}{5.0 mmol]
and {4)[2.5 mel] in dry acetonitrile with 365 nm light.

In the photooxygenation of (4) by the pyridazine N-oxide (3) in methyleng chloride, © the consumption rats
of (3) has been found not o be affected by the presance of (4) in varicus concentraticns, which has led to
the hypothesis that an atomic oxygen (oxene} is liberated directly from the excited (3) and then intercepted
by {4). ® The analogous phenomenon was cbserved upon employment of acetonitrile as a solvent.

In sharp contrast, the photooxygenation of (4) by (1) showed evidently a concentration-dependence : the
N-oxide (1) itself was quite stable in acetonitrile under the photochemical conditions, whereas the
consumption of (1} was facilitated as the quantity of the added (4) increases, indicating that an interaction
between (1) and {4) is a requisite for the photooxygenation. This discrepancy suggests that the presant
photooxygenation involves a reaction mede which is diffsrent from the oxena mechanism, freguently
proposed for the photooxygenation by heterocyclic N-oxides, 2

Additionally, the following facts are in agreemant with above aspect : i) the pyridazine N-oxide (3)
photochemically oxygenated cyclohexana to give cyclohexanal, supporting the generation of an oxene
intarmediacy. 5 The N-oxide (1), howaver, was very stable in cyclohexane undsr analogous conditions;
i) the preduct distribution in the photooxidation of (4) by (1) is diffarent from the case of (3), i.e., in the
case of (1), aliylic oxidation of (4) to afford (5} and (8) occurred predominantly rather than epoxidation,
while under our experimental conditions the photooxidation of (4) by {3) gave the epoxide (7}{17 %) and tha
cyclohexanone (8)(3 %) without the formation of the allylic oxidation preducts {5) and (6). 58

The free energy change calculated for the SET irom tha elsctron donor (4) to the singlet-excited {1} (AG,
-4.30 Kcal mol'') 89 suggests that the SET process is exothermic.  The photcoxygenation of (4) by (1)
was significantly suppressed with a concentration dependence by addition of strong eleciron acceptors
such as tetracyanocethylene and tetracyanoguinodimethane 1o the reaction medium.  The Stern-Voimer
plots for quenching of the fluorescence of (1) by (4) in acetonitrile wers finear {k, T, = 3.5 M*) and the rate
constant (kg) was estimated to be ca. 1.2 x 109 M1 571, 10 which is near the diffusion controlled limit of
1x10'® M's"" in acetonitrile,  Thase facts show that the prasent photooxyganatian invalves the initial SET

from {4) to the singlst-excited (1) leading to cation- and anion-radicals, (A) and (B). (sae Scheme 2)
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Radicals (C) and (D) could be formed by a proton transfer from (A)to (B).  Thare have been pracedents'!
for the analogous photoreactians invelving the generation of the allyl radicai (C) from cyclohexane (4} via
sequent electron- and proton-transters.  Tha direct allylic hydregen abstraction of (4) by a tripiet-axcited
{1} leading to {C) '2 can be eliminated on the basis of the fact that neither a triplet sensitizer (acetane or
acetophenone) nor a triplet quancher (diacetyl) had any significant effect on the formation of the allylic
oxidation products (5) and (8).  The radical coupling of (€) with (D) results in the formation of (5) and (2)
via an intermediate (E).  Subsequent dehydrogenation of (5) by the excited (1) gives (6).  Coupling of the
radical icns, (A) and (B), oceurs to afford the epoxycyclohexane (7) and cyclohexanone (8) as a minor
process via a zwitterionic intermediate (F).  The coupling of photochemically generatad radical cation-
anion pair has been documented. 1113

Under the analogous conditions, the photooxygenation of norbornene (9} by (1) resulted in the formation of
exc-spoxynorbornane (10} and norcamphor (11) in 42 % and 4 % yields (by gc}, respectively, togsther with
a trace amount of cyclohexene-4-carboxaldehyde (12){by gc and 'H-nmr).

The calculated free-energy change (AGg; = -7.07 Keal mol'') 8 and the quenching constant of the
fluorescence of (1) by (9)(kq = ca. 1.4 x 10% M! s°1) suggest that the SET from (9) to the singlet-excited (1)
occurs more easily than that from (4).  In this case, however, the subsaquent proton transfer from the
cation radical {A) to the anion radical (B) leading 1o the allylic radical (C) is preventad due ta the savarse
starecelectronic hindrance. '*  As a consequence, the coupling of (A) with {B) occurs pradominantly to give
the epoxide (10} and the rearranged preducts (11) and {12) via an intermediate (F). (see Scheme 2)

The photoreaction of (9) by (3) under the analogous conditions resulted in the fermation of (10} and {(11)
rather in poor yislds {8 % and 1 %). The result obtained in a concentration-dependence experiment

supports that this photoreaction could be operated by the oxane mechanism.
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The hemin-catalyzed oxidation of {4) and (@), > '€ a model reaction of cytochreme P-450, has been
reported to give the oxygenated products (5) - (8), (10} - (12), and endo-opoxyncrbornane. 17 The

biological oxidation catalyzed by cytochrome P-450 can be best explained in most cases in terms of tha

initial SET from substrates to the oxidizing species symbolized by (Fe!¥ = 0)t. ¥ Thus we can conclude

that the present pholooxygenation of the simple olefins (4} and (9) by {1) well accommodates tha hemin-

catalyzed oxidation with respect to the invclvement of the initial SET process.
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