N^3 -(ARYLTHIO-, ARALKYLTHIO- AND ALKYLTHIO)-5,5-DIMETHYLHYDANTOINS: SULFENYL GROUP TRANSFER REACTIONS AND THEIR PROPERTIES¹

Ken'ichi Takeda* and Kusuo Horiki Shionogi Research Laboratories, Shionogi & Co., Ltd., 12-4, Sagisu 5-chome, Fukushima-ku, Osaka 553, Japan

<u>Abstract</u> — Sulfenyl-transfer reactions toward a variety of nucleophiles were successfully carried out using N^3 -sulfenylsubstituted 5,5-dimethylhydantoins (<u>2a-c</u>). During the course of the synthesis of <u>2</u> by the reaction of N^1 -bromo-5,5-dimethylhydantoin (<u>lc</u>) with disulfides, the sulfenyl groups were found to be at the position of N^3 although the bromine was at N^1 in the starting monobromohydantoin (<u>lc</u>). Some mechanistic speculations were considered for the formation of 2 from lc.

A variety of sulfenimides as sulfenyl-transfer reagents have hitherto been reported.² Surprisingly however, since Büchel and Conte³ reported the synthesis of N^3 -(arylthio- and aralkylthio)-5,5-dimethylhydantoins (2), no systematic investigation on sulfenyl-transfer reactions utilizing 2 has been published. To our knowledge, there is only the paper by Sosnovsky and Krogh⁴ dealing with sulfenyl-transfer reactions to amines using 2a. Our continuing interest in group transfer reactions mediated by 5,5-dimethyl-

Scheme 1

- 367 -

hydantoin derivatives⁵ led us to study sulfenyl-transfer reactions using <u>2</u>. N³-(Arylthio-, aralkylthio- and alkylthio)-5,5-dimethylhydantoins (<u>2</u>) were conveniently prepared by the reaction of N-monobromo-5,5-dimethylhydantoin with the appropriate disulfides using a reported procedure³ as shown in Scheme 1. The reaction of <u>2a-c</u> with a variety of nucleophiles smoothly proceeded to give the corresponding sulfenylated compounds in good to excellent yields as seen in Table 1. Easy preparation of <u>2a-c</u> and rapid completion of the sulfenyl group transfer reactions should lead to wide use of this system in organic syntheses.

Sulfenímide	Nucleophile	Product ^a	Reaction Condition (Solv., Temp., Reaction time) (1	Mp(°C) or n _D it. mp or bP)	Yield (%)
<u>2a</u>	morpholine	PhSNO	CH ₂ Cl ₂ , rt, 16 h	33-35 (33-36) ⁶	99.9
	piperazine	PhSNNSPh	CH_2Cl_2 , rt, 4 h	162-164 (164-166) ⁶	79
	aniline	PhSNHPh	C_2H_5OH , refl., 3.5 h	54.5-56.5 (57-59) ⁷	86
	MBT ^b	PhSS -	benzene, refl., 15 mi	n ca.30	93
	KCN	PhSCN	$CH_2Cl_2-H_2O$, rt, 1 h	n _D ²⁵ 1.5709 (66-67/3torr) ^{2b}	86
<u>2b</u>	morpholine	p-Cl-PhSNO	CH ₂ Cl ₂ , rt, 23.5 h	35-37	98.5
<u>2c</u>	morpholine	PhCH2SN0	benzene, refl., 1 h	72-74 (72-74) ⁷	91
	$\mathtt{MBT}^{\mathbf{b}}$	PhCH ₂ SS -	benzene, refl., 45 mi	n 64.5-65.5	87-95
	PhSO2Na	PhCH2SSO2Ph	$CH_2Cl_2-H_2O$, rt, 10 h	39-41	70.5

Table 1. Products Derived from the Reaction of 2 with Nucleophiles

a. Satisfactory elemental analyses for C, H, N, S, and Cl were obtained within ± 0.3 % of the expected values.

b. 2-Mercaptobenzothiazole.

Although the position of the bromine of N-monobromo-5,5-dimethylhydantoin had been considered to be at N^3 , the extensive work of Corral and Orazi⁸ on the monobromination of <u>la</u> with an equivalent quantity of bromine in alkaline medium or with other bromination methods led to establishment of the structure as N^1 -bromo-5,5-dimethyl-

hydantoin (<u>lc</u>). From this result, the structure of N-monobromo-5,5-dimethylhydantoin used in the preparation of <u>2</u> by Büchel and Conte³ can be regarded as <u>lc</u>. Interestingly, N³-(arylthio-, aralkylthio- and alkylthio)-5,5-dimethylhydantoins (<u>2</u>) were nevertheless obtained by treatment of appropriate disulfides with <u>lc</u>, in which a bromine atom was located at the N¹ position. The structures of <u>2a-d</u> were readily characterized by examining the chemical shift of the amide NH's in the ¹H nmr at around δ 6.3-7.5⁹ as shown in Table 2.

Compounda	$Mp(^{\circ}C)(1i+mp)$	Viold(%)	$^{1}_{H Nmr}$ (δ , ppm) d (lit. value)			
compound	Mp(C) (IIC, mp)	TIEIG(%)	N ¹ -H	N ³ -н	N ¹ -C <u>H</u> 3	$N^3 - C\underline{H}_3$
<u>2a</u>	123-125 [°] (106-107) ³	77	7.17 - 7.58 ^e			
<u>2b</u>	145.5-148 (128-129) ³	62	6.33			
20	142-143 [°] (125 - 126) ³	35-70	6.83			
2d	101-103	74	7.45			
<u>3a</u> b	oil	52 (from <u>2a</u>)				3.10
<u>3b</u>	60-61.5	53				3.04
<u>4b</u>	92-93	36			2.83	
<u>5a</u>	121-123	59		9.55		
<u>5b</u>	149-151	66		9.17		
<u>5c</u>	160-162	44-86		9.13		
<u>5d</u>	79-81	45		9.17		
<u>6</u> b	157.5-159.5(160) ¹⁰			9.55 (9.3) ⁹	2.86 (2.85) ¹²	
⁹ و	146-147.5(148.5 - 149) ¹¹	6.98 (6.6) ⁹			3.03 (3.00) ¹²

Table 2. Preparation of 5,5-Dimethylhydantoin Derivatives

a. Unless otherwise specified, satisfactory elemental analyses for C, H, N, S, and Cl were obtained within ± 0.3 % of the expected values.

b. Elemental analysis was not performed.

c. The mp occasionally varied probably due to the different crystal form caused by a different solvent composition [CH₂Cl₂-ether-(n-hexane)] used for recrystallization.

d. ¹H Nmr spectra were obtained in CDCl₃ using TMS as an internal standard.

e. The amide proton shows overlapping with aromatic protons, but the proton for 2a obtained in a different experiment was at δ 7.02.

This strongly suggests migration of bromine or some other rearrangement in the formation of 2. To confirm the structure of 2 by chemical transformations as shown

in Scheme 2, we tried methylation of $\underline{2a}$ and $\underline{2c}$ by treatment with an equimolar amount of sodium hydride (NaH) followed by reaction with dimethyl sulfate to obtain methylated compounds in 52 and 53% yields, respectively.

Scheme 2

(a) NaH/DMF, (CH₃O)₂SO₂, -20°C.
 (b) NaH/DMF, -20°C or rt.
 (c) Br₂/aq. KOH.
 (d) (PhCH₂S)₂/benzene, refl.
 (e) m-CPBA/CH₂Cl₂.

The signals of the methyl groups attached to nitrogen in the ¹H nmr at δ 3.10 and 3.04¹² suggested that the location of the methyl group is unexpectedly at N³, indicating sulfenyl group migration from N³ to N¹ during the methylation reaction. For comparison, compound <u>4b</u> was unambiguously synthesized by the reaction of <u>7</u> with dibenzyl disulfide and this was shown to be not identical with the above obtained 3b, as expected (Table 2).

We thought it would be interesting to find in which stage of the two consecutive reactions (NaH treatment or the following methylation) the sulfenyl migration occurred. Treatment of <u>2a-d</u> with NaH resulted in the formation of sulfenyl-migrated compounds, <u>5a-d</u>, in 44 to 86% yields, the structures of which were confirmed by ¹H nmr spectra⁹ (Table 2). This showed that sulfenyl migration occurred prior to the methylation reaction. Taking account of the acidity¹³ of both amide (imide) NH's at positions 1 and 3, this fact may be explained by assuming that the nitrogen anion at position 1 generated by treatment of <u>2a-d</u> with NaH is less thermodynamically stable than that at position 3 to lead to the formation of a more stable nitrogen anion at position 3, accompanied by simultaneous

-370 -

sulfenyl migration from N^3 to N^1 . However, at present, the mechanism of the sulfenyl migration is not clear.

In order to fully confirm the structures of the sulfenyl-migrated <u>3a</u> and <u>3b</u>, we next attempted to synthesize them by alternative routes as shown in Scheme 3. The reaction of N¹-bromo-3,5,5-trimethylhydantoin (<u>10</u>) with diphenyl disulfide afforded the desired <u>3a</u> as an oil, which was subsequently converted to crystalline <u>8</u> (mp 139-141°C) by oxidation with m-CPBA. This was identical with the oxidation product of the sulfenyl-migrated product, <u>3a</u>, as shown in Scheme 2. However, the reaction of <u>10</u> with dibenzyl disulfide did not afford the anticipated <u>3b</u>, producing instead a small amount of benzaldehyde (<u>11</u>), identified as 2,4-dinitrophenylhydrazone, together with the debrominated <u>9</u> (38-43% yield). Next, treatment of <u>3b</u> obtained as shown in Scheme 2 with morpholine in refluxing benzene for 48 h gave the desulfenylated <u>9</u> in a yield of 45.8%, and the unreacted starting <u>3b</u> (-19%) was recovered. The structures of <u>3a</u> and <u>3b</u> were thus established by ¹H nmr spectra as well as by alternative synthesis of 3a or transformation of 3b to 9.

Scheme 3

(a) Br₂/aq.KOH.
(b) (PhS)₂/benzene, refl.
(c) m-CPBA/CH₂Cl₂.
(d) (PhCH₂S)₂/benzene, refl.
(e) morpholine/benzene, refl.

Some mechanistic speculations were then considered for the formation of N^3 -sulfenylated hydantoin (2) from N^1 -bromohydantoin (1c) and disulfides. The initial reaction is considered to proceed through a radical process³ as shown in Scheme 4. The initially formed 12 is considered to be an electron-demanding

radical and accordingly electron transfer from disulfide to <u>12</u> may occur to form <u>13</u> having a nitrogen anion at position 1. Here, the nitrogen anion at position 3 seems to be by far more stable than that at position 1 as already discussed above. A rapid prototropy from N³ to N¹ is likely to occur, giving <u>14</u>, which subsequently attacks the sulfur atom adjacent to the cation radical to give <u>2</u>. With respect to the formation of benzaldehyde (<u>11</u>) in the reaction of <u>10</u> with dibenzyl disulfide, at least two alternative pathways seem to be possible as shown in Scheme 5. However, discrimination between the two routes would require further study.

Scheme 5

REFERENCES AND NOTES

- 1. Dedicated to the memory of Professor Tetsuji Kametani.
- a) M. Furukawa, T. Suda, A. Tsukamoto, and S. Hayashi, <u>Synthesis</u>, 1975, 165 and references cited therein; b) M. Furukawa, T. Suda, and S. Hayashi, Chem. Pharm. Bull., 1976, 24, 1708.
- 3. K. H. Büchel and A. Conte, Chem. Ber., 1967, 100, 1248.
- 4. G. Sosnovsky and J. A. Krogh, Liebigs Ann. Chem., 1982, 121.
- 5. K. Horiki, <u>Heterocycles</u>, 1976, 5, 203.
- 6. J. E. Dunbar and J. H. Rogers, <u>J. Org. Chem.</u>, 1966, <u>31</u>, 2842.
- 7. D. N. Harpp and T. G. Back, Tetrahedron Lett., 1971, 4953.
- 8. R. A. Corral and O. O. Orazi, <u>J. Org. Chem</u>., 1963, <u>28</u>, 1100.
- 9. R. A. Corral and O. O. Orazi, <u>Spectrochimica Acta</u>, 1965, <u>21</u>, 2119. An intensive study on ¹H nmr (CDCl₃) by these authors for various substituted hydantoins demonstrated that the chemical shift of the amide proton at position 1 is at δ 6.4-6.9. On the other hand, the chemical shift of the imide proton at position 3 is at δ 9.2-9.3.
- 10. R. E. Stuckey, J. Chem. Soc., 1947, 331.
- O. O. Orazi, R. A. Corral, and J. D. Bonafede, <u>Anales Asoc. Quim. Argentina</u>, 1957, <u>45</u>, 139 (<u>Chem. Abstr.</u>, 1958, <u>52</u>, 15507e).
- 12. Corral and Orazi⁹ also showed that the signal of $N^{1}-C\underline{H}_{3}$ can be observed at δ 2.81-2.85 and that of $N^{3}-C\underline{H}_{3}$ at δ 3.00-3.03 in the ¹H nmr (CDCl₃).
- 13. 0. 0. Orazi and R. A. Corral, Tetrahedron, 1961, 15, 93.

Received, 31st August, 1989