REDUCTION OF N-OXIDE WITH BAKER'S YEAST

Mitsuhiro Takeshita* and Sachiko Yoshida Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aobaku, Sendai 981, Japan

<u>Abstract</u> – Reduction of N-oxides with baker's yeast has been examined. In the reduction of acetylpyridine N-oxides, selective reduction takes place to give chiral pyridylethanol N-oxides.

Baker's yeast (Saccharomyces cerevisiae) has been recognized as one of potentially useful catalyst for the synthesis of various chiral synthons. Based on its reductive abilities, carbonyl¹ and nitro² groups have been converted to corresponding hydroxyl and amino moleties. Deoxygenation of pyridine N-oxide itself with baker's yeast was reported, 3 however, no extensive study on the reduction of N-oxide using this microorganism has been carried out. We now report the reduction of aromatic or aliphatic N-oxides and the chemoselective reduction of acylpyridine N-oxides with baker's yeast. As shown in Table I, when substituted pyridine Noxides (1) were treated with baker's yeast for 161-168 h at 35 °C, the reduction proceeded to give the corresponding deoxygenated pyridine derivatives (2) in 0-44 % chemical yields. In these reductions, it was found that by substitution of electron-donating group on pyridine ring, N-oxides were smoothly reduced to afford deoxygenated products (22-44 %)(Entries a-e), while by substitution of electron-withdrawing group, the reaction proceeded in poor chemical yields (0-7 %)(Entries g-I). The same reaction of aromatic N-oxides (quinoline N-oxide (3), isoquinoline N-oxide (5)) gave also the corresponding deoxygenated products (4), (6) in 8 and 44 % chemical yields, respectively. In contrast to the reduction of aromatic N-oxides, however, aliphatic N-oxides (7), (9), (11) were reduced in moderate to good chemical yields (52-84 %)

+ Dedicated to the memory of Dr. Tetsuji Kametani.

(Table II). Interestingly, when (S)-(-)-nicotine-N, N'-dioxide $(13)^4$ was treated with baker's yeast, selective reduction between aromatic and aliphatic N-oxides was occurred to give pyridine N-oxide $(14)^4$ in 32 % chemical yield with (S)-(-)-nicotine (15) as a minor product

(6 %)(Scheme I).

$$\begin{array}{c|c} & & \\ &$$

No	R	Time	YI	eld of 2
		(h) ^{a)}		(%) ^{b)}
а	2-CH ₃	168	22	(76)
b	3-CH3	161	29	(64)
C	4-CH3	166	22	(74)
d	3-0H	167	31	(0)
e	4-0CH3	161	44	(5)
f	4-C ₆ H ₅	164	35	(58)
g	4-NO2	164	0	(0)
h	4-CN	168	0	(84)
i	2 - B r	166	7	(54)

a) Temperature Is 35 °C.

b) Recovered starting material is given in parenthesis.

Table II. Reduction of Aromatic and Allphatic N-Oxides with Baker's Yeast

	Time	Temp.		Yield	
Substrate	(h)	(°C)	Product	(%)	
Quinoline N-oxide (3)	166	35	Quinoline (4)	8	
Isoquinoline N-oxide (5)	168	33	Isoquinoline (6)	44	
N,N-Dimethylaniline N-oxide (7)	156	33	N,N-Dimethylanlline (8)	52	
N-Methylmorphorine N-oxide (9)	168	35	N-Methylmorphorine (10)	78	
N-Phenylmorphorine N-oxide (11)	168	33	N-Phenylmorphorine (12)	84	

As shown in Table III, when acetylpyridine N-oxides (16)⁵ were incubated with baker's yeast, chemoselective reduction was occurred to give the chiral pyridylethanol N-oxides (17)⁶. Namely, carbonyl group was reduced in preference to N-oxide in this reaction. The alcohols (17) thus obtained were found to have (S)-configuration by conversion of 17 with Raney Nickel into the chiral pyridylethanols (18)⁷. The optical purities of the alcohols derived from both α - and β -isomers (17 α , β) were significantly higher (96-97% ee), but the optical purity of γ -isomer (17 γ) was somewhat lower (65% ee).

	Temp. (°C)	Time (h)		[¤]D of (17) ^{a)} In CHCl ₃		Config ^{C)} of (17)	Yield of (18) (%)	[α] _D of (18) ⁸⁾ In CHCI ₃
α	35	96	95	+16.8 [°] (c=9.5)	96	S	2 0	-21.7°(c=0.8)
β	27	95	36	+7.0 [°] (c=1.0)	97	S	47	-56.6°(c=1.8)
γ	29	73	31	-2.6°(c=1.0)	65	s	30	-33.5°(c=2.6)

Table III. Asymmetric Reduction of Acetylpyridine N-Oxides with Baker's Yeast

a) Temperature: 22-23 °C.b) Optical purities are determined by 400 MHz ¹H-nmr(CDCl₃) analysis of the corresponding (-)- α - methoxy- α -trifluoromethylphenylacetic acid ester (MTPA ester) of (17). C) Determined from the configuration of (18).

Thus, we found that aliphatic N-oxide could be reduced easier than aromatic N-oxides by baker's yeast and in the reduction of acetylpyridine N-oxides, only carbonyl group was reduced to give the pyridylethanol N-oxides.

EXPERIMENTAL

Reduction of N-oxides (1a) with baker's yeast.

A mixture of α -picoline N-oxide (1a)(0.5 g) and baker's yeast (500 g)(purchased from Oriental Yeast Co.) in water (250 ml) was incubated for 161-168 h at 30-35 °C. The mixture was extracted continuously with CHCl₃ using a Soxlet apparatus and the extract was dried over

Na₂SO₄. The solvent was removed under reduced pressure to give the residue which was purified by silica gel (12 g) column chromatography using CH₂Cl₂ as an eluent to yield $(2a)^8$ (0.19 g, 22 %). bp 130 °C.

Synthesis of (S)-2-pyridylethanol N-oxide (17 α) with baker's yeast.

A mixture of 2-acetylpyridine N-oxide (16 α)(1.0 g) and baker's yeast (500 g) in water (250 ml) was incubated for 96 h at 35 °C. The mixture was extracted continuously with CHCl3 using a Soxlet apparatus and the extract was dried over Na₂SO₄. The sovent was removed under reduced pressure to give the residue which was purified by silica gel (15 g) column chromatography using CH₂Cl₂-MeOH (98:2) as an eluent to give (17 α)⁶(0.96 g, 95 %). [α]²²_D+16.8 °(c= 9.5, CHCl₃), (96 % ee).

REFERENCES AND NOTES

- There are many reviews. For example: T. Fujisawa, T. Sato, and T. Itoh, J. Syn. Org. Chem. Jpn., 1986, <u>44</u>, 519 ; J. B. Jones, Tetrahedron, 1986, <u>42</u>, 3351 and references cite therein.
- 2. M. Takeshita, S. Yoshida, R. Kiya, N. Higuchi, and Y. Kobayashi, Chem. Pharm. Bull., 1989, <u>37</u>, 616.
- 3. A. May, Enzymologia, 1957, 18, 142.
- E. C. Taylor and N. E. Boyer, J. Org. Chem., 1959, <u>24</u>, 275; J. C. Craig and K. K.
 Purushothaman, ibid., 1970, <u>35</u>, 1720; T. R. Simpson, Jr., J. C. Craig, and W. D. Kumler, J.
 Pharm. Sci., 1967, <u>56</u>, 708; A. H. Beckett, P. Jenner, and J. W. Gorrod, Zenobiotica, 1973, <u>3</u>, 557.
- S. Kanno, Bull. Chem. Soc., Jpn., 1952, <u>73.</u> 120; A. R. Katritzky, J. Chem. Soc., 1956, 2404; S. A. Sojka, J. Org. Chem., 1979, <u>44</u>, 307.
- The racemates are reported: C. W. Muth, J. C. Patton, B. Bhattacharya, D. L. Giberson, and
 C. A. Ferguson, J. Heterocycl. Chem., 1972, <u>9</u>, 1299; E. J. Warawa, J. Org. Chem., 1975,
 <u>40</u>, 2092 : V. Boekelheide and W. J. Linn, J. Am. Chem. Soc., 1954, <u>76</u>, 1290.
- 7 M. Takeshita, K. Terada, N. Akutsu, S. Yoshida, and T. Sato, Heterocycles, 1987, 26, 3051.
- 8 Identified with the authentic samples purchased from Aldrich Chemical Co.

Received, 31st August, 1989