OXAZIRIDINES AND NITRONES AS POTENTIAL INHIBITORS OF BACTERIAL D,D-PEPTIDASES

Jacqueline Marchand-Brynaert, Zoubida Bounkhala-Khrouz^o, Huguette Vanlierde, and Léon Ghosez^{*}

Laboratoire de Chimie Organique de Synthèse Université Catholique de Louvain Place L. Pasteur, 1 B-1348 LOUVAIN-LA-NEUVE - BELGIUM

<u>Abstract</u>-Novel functionalized oxaziridines and nitrones have been prepared and examined as potential irreversible inhibitors of bacterial PBPs. N-(β -Hydroxycarbonyl)ethyloxaziridines were found to undergo a fast isomerisation in protic solvent to yield the corresponding nitrones.

INTRODUCTION

The most important clinical problems encountered in antibiotherapy using β -lactam derivatives¹ arise from the widespread emergence of resistant pathogenic bacteria producing β -lactamases.² Therefore, intensive efforts have been made to discover new active β -lactams that will overcome the bacterial defense mechanism.³ Concurrently, the design and synthesis of non- β -lactam analogs have received increasing attention.^{4,5} We have ourselves examined several classes of heterocycles^{6,7} susceptible to interact with the penicillins binding proteins (PBPs)³² in the same manner as the β -lactams. Oxaziridines⁸ have been considered as potential irreversible alkylating inhibitors of the bacterial serine D,D-transpeptidases.

° present address : Continental Pharma Co., rue Grandbompré, 11, B-1348 Mont-Saint Guibert, Belgium.

Taking account of stereoelectronic factors for nucleophilic ring opening and topological requirements for molecular regognition, we selected structures <u>1</u> as first synthetic targets⁸ (Scheme 1). Oxaziridines <u>1a</u> were found to be unstable, giving rise to a rapid β -elimination.^{9,10} On the other hand, oxaziridines <u>1b</u>, bearing no hydrogen atom α to the carbonyl group, could be isolated as esters (R²≠H) and one derivative (R¹=PhCH₂, R²=CH₂OCOtC₄H₉, R³=CH₃) showed a weak bacteriostatic activity in vitro.⁸ Unfortunately, attempts to prepare the free acids <u>1b</u> (R²=H) failed probably as a result of intramolecular cleavage of the three-membered ring by the carboxyl group. We therefore decided to synthesize the higher homologs <u>2</u> (Scheme 2) which can be considered as topological analogs of oxamazins <u>3</u>,^{11,12} a novel class of β -lactam antibiotics. These compounds having no acidic hydrogen were expected to be more stable.

Scheme 2

RESULTS

Oxaziridines $9 \cdot 10$ (Table I) were readily prepared by a convergent synthetic plan involving the oxidation of Schiff bases <u>7-8</u> derived from D- α -alaninals <u>4</u> and β -alaninates <u>5-6</u> (Scheme 3). Aldehydes <u>4</u> obtained by reduction of the appropriate D-alanine derivatives have been previously described.^{8,13} They readily reacted with pivaloyloxymethyl - or t-butyldiphenylsilyl- β -alaninates <u>5</u> and <u>6</u> to yield respectively the (E)-imines <u>7</u> and <u>8</u>. These crude intermediates were directly oxidized with m-chloroperbenzoic acid at room temperature; the stable oxaziridines <u>9</u> and <u>10</u> were obtained as mixtures of two diastereoisomers, resulting from unselective formation of a new asymmetric center in the oxidation process.¹⁴ The proton on the oxaziridine ring gives rize to two doublets near δ 4.00 and the carbon atom shows two typical lines near 82 ppm, in the nmr spectra.

R ¹	R ²	Compd	Yield (from <u>4</u>)
PhCH ₂	CH₂OCOtC₄H9	<u>9a</u>	40%
PhOCH ₂	CH₂OCOtC₄H ₉	<u>9b</u>	47%
CCH₃ OCH₃	CH₂OCOtC₄H9	<u>9c</u>	52%
PhCH ₂	SiPh ₂ tC ₄ H ₉	<u>10a</u>	60%
PhOCH ₂	SiPh ₂ tC ₄ H ₉	<u>10b</u>	54%

Table I : Preparation of oxaziridines (Scheme 3)

The biodegradable¹⁵ esters <u>9a-c</u> were submitted to biological evaluation towards representative gram-positive and gram-negative bacterial strains. No activity was found for concentrations up to 200 μ M.¹⁶

9, 10 (two diastereoisomers)

(i) $(C_2H_5)_3N$ (1equiv.), 3Å molecular sieves, CH_2Cl_2 , 20°C, 3 h; (ii) MCPBA (1equiv.), CH_2Cl_2 , 20°C, 2 h; (iii) chromatography on SiO₂

Scheme 3

Mild acidic hydrolysis (HOAc, H₂O-THF, 0° to 20°C) of the silvl ester 10 gave untractable mixtures. Smooth basic hydrolysis (NaHCO3, CH3OH-H2O, 0° to 20°C) also resulted in the cleavage of oxaziridine ring. Nitrones 12 were the only isolated products in moderate to good yields (Scheme 4). These new compounds are well characterized in 1H nmr by a doublet near § 7.10-7.20 assigned to the azomethinic proton. The carbon atom of the C=N double bond gives a typical line near 145 ppm in 13C nmr. The chemical unstability of the deprotected oxaziridines 11 probably results from an anchimeric assistance of the carboxylate group to nucleophilic cleavage of the oxaziridine C-O bond (Scheme 4). Indeed, oxaziridine rearrangements17,18 into nitrones normally occur under more drastic conditions, for instance in the presence of strong Lewis acid catalyst^{19,20} or at much higher temperature.^{19,21} Since the presence of an acylamino side chain in <u>10-11</u> could also contribute to the cleavage of the oxaziridine ring, we investigated the behaviour of the model compound 15. The precursor 14 of the free acid was prepared in 71% overall yield from the oxidation of the imine <u>13</u> derived from β -alanine and isobutyraldehyde (Scheme 5). Treatment of <u>14</u> with an excess of acetic acid in aqueous THF solution smoothly cleaved the silyl ester²² to give the stable oxaziridine 15 which was purified by chromatography on silica gel. The corresponding carboxylate 17 (M+=Na+) obtained by addition of aqueous sodium hydrogenocarbonate immediately yielded the corresponding nitrone 16. However, the oxaziridine ring of 17 was found to be stable in non-protic solvent : addition of potassium 2-ethylhexanoate to 15 in dry ethyl acetate led to the precipitation of the potassium salt 17. The stability of this material was further examined by 1H nmr spectroscopy in CD₃OD : rearrangement into nitrone 16 (M+=K+) occurred within 20 minutes at 30°C.

(i) ClSiPh₂tC₄H₉, CHCl₃, CH₃CN, Δ ; (ii) (C₂H₅)₃N, 3Å molecular sieves, iC₃H₇-CHO, CH₂Cl₂; (iii) MCPBA, CH₂Cl₂, 20°C; (iv) HOAc-THF-H₂O (2:1:1), 20°C, 24 h; (v) NaHCO₃ (1equiv.), CH₃OH, THF, H₂O, 2 h, 20°C; (vi) NaHCO₃ (1equiv.), Acetone, H₂O; (vii) K⁺ 2-ethyl-hexanoate, C₂H₅OAc, 20°C; (viii) CD₃OD, 30°C.

Scheme 5

Thus oxaziridines <u>2</u> bearing a β -(hydroxycarbonyl)ethyl chain on the nitrogen atom are expected to be converted into the corresponding nitrones at physiological pH. On the other hand, oxaridinines <u>9,10,14</u> and <u>15</u> were found to be stable under usual chromatographic conditions. No rearrangement into corresponding amides was observed.²³

The nitrones themselves^{24,25} were examined as potential D,D-peptidases inhibitors. Compounds <u>18-19</u> can be regarded as modified peptide substrates which should be activated towards nucleophilic attack²⁶ (Scheme 6).

peptide substrate (D-Ala-D-Ala)

nitrones <u>18</u> R = H <u>19</u> R = CH₃

Scheme 6

Nitrones <u>18</u> were conventionally prepared²⁴ by coupling the known hydroxylamine derivative <u>20</u>²⁷ with aldehydes <u>4</u> in the presence of triethylamine (Scheme 7). The triethylammonium carboxylate intermediates <u>21</u> were washed with aqueous NaHCO₃ to yield the sodium salts <u>18</u>.

(i) (C₂H₅)₃N(1equiv.), 3Å molecular sieves, CH₂Cl₂, 40°C; (ii) NaHCO₃, H₂O, 20°C

Scheme 7

Nitrone <u>19a</u> was prepared according to Scheme 8. The Schiff base derived from methyl α -aminoisobutyrate and p-methoxybenzaldehyde was oxidized to oxaziridine <u>22</u>. Strong acidic hydrolysis²⁸ of <u>22</u> yielded the hydroxylamine derivative <u>23</u> which was coupled with aldehyde <u>4a</u> to give the nitrone <u>19a</u>.

(i) CH₃O-C₆H₄-CHO, benzene, Δ ; (ii) MCPBA, CH₂Cl₂; (iii) 12N HCl, 100°C; (iv) (CH₃)₃SiCl (excess), (C₂H₅)₃N (excess), CHCl₃, Δ then C₂H₅OH; (v) (C₂H₅)₃N (1equiv.), CH₂Cl₂, $3\mathring{A}$ molecular sieves , 40°C; (vi) NaHCO₃, C₂H₅OAc-H₂O.

Scheme 8

Nitrones <u>12a</u>, <u>12b</u>, <u>18a</u>, <u>18b</u> and <u>19a</u> were found devoid of antibiotic properties at 100 μ M concentration.¹⁶ They were also tested as potential inhibitors of isolated D,D-peptidases²⁹ and β -lactamases.³⁰ No activity could be detected a final concentrations up to 100 μ M. Thus, nitrones structurally related to the β -lactam antibiotics family (penicillins and oxamazins) appear totally inactive in vitro. As an interesting consequence, the weak bacteriostatic activity previously observed^{6,8} for oxaziridine <u>1b</u> could be well assigned to the presence of the reactive small ring, since its potentially rearrangement product <u>19a</u> under physiological conditions lacks of activity.³¹

EXPERIMENTAL

Melting points were taken with a Leitz microscope and are uncorrected. Rotations $(\pm 0.1^{\circ})$ were determined on a Perkin-Elmer 241 MC polarimeter in CH₂Ci₂ at 20°C. Ir spectra were taken with a Perkin-Elmer 297 instrument in CH₂Cl₂ (unless otherwise mentioned) and calibrated with polystyrene. 1H Nmr spectra were recorded on Varian T60, Varian XL-200 or Varian Gemini 200 spectrometers in CDCl₃ (unless otherwise mentioned) with TMS as internal standard. 1³C Nmr spectra were recorded on Varian FT-80A or Varian XL-200 spectrometers. Mass spectra were obtained on a Varian MAT 44 instrument (CI-IB, chemical ionisation with isobutene). Microanalyses were performed at the University of Vienna (Austria). Columnchromatographies were performed with Merck silica gel 60 (70-230 mesh ASTM). DMF, CH₂Cl₂, CHCl₃ and C_2H_5OAc were dried over P_2O_5 at reflux, then distilled. Ether was dried over LiAlH₄ and benzene was distilled over Na. (C_2H_5)₃N was storred on KOH pellets.

Pivaloyloxymethyl β-alaninate 5 :

N-(*t*-Butyloxycarbonyl)- β -alanine : β -Alanine (8.9 g, 0.1 mol) in 1:1 acetone-water solution (120 ml) was stirred with (C₂H₅)₃N (21 ml, 0.15 mol) and BOC-ON (27 g, 0.11 mol) for 5 h at 20°C. After addition of water (170 ml), the solution was washed with ether (2 x 100 ml), then acidified to pH 4 with 2N HCl and extracted with ether (2 x 100 ml). Drying on MgSO₄ and concentration of the organic layers gave the N-protected β -alanine: yield 17.4 g (92 %); 1H nmr (60 MHz) δ 1.46 (s, 9H), 2.53 (t, 2H, J=6 Hz), 3.37 (txd, 2H, J=6 and 6 Hz), 5.10 (br d, 1H, NH), 8.06 (m, 1H, COOH).

Pivaloyloxymethyl-N-(t-butyloxycarbonyl)-β-alaninate : BOC-β-alanine (17.4 g, 0.092 mol) in DMF solution (125 ml) was treated with chloromethyl pivalate (13.25 ml, 0.092 mol) in the presence of solid KHCO₃ (10.7 g, 0.11 mol). After stirring for 24 h at 20°C, the solvent was evaporated under reduced pressure and the residue was chromatographed on silica gel (CH₂Cl₂-C₂H₅OAc 4:1) to furnish the PIV ester : yield 11.5 g (42%); 1H nmr (60 MHz) δ 1.22 (s, 9H), 1.43 (s, 9H), 2.40 (t, 2H, J=6 Hz), 3.38 (txd, 2H, J=6 and 6 Hz), 4.97 (m, 1H, NH), 5.67 (s, 2H).

BOC deprotection : N-BOC-β-alanine PIV ester (11.5 g, 0.038 mol) was dissolved in 0.5N HBr-CH₂Cl₂ solution (150 ml) and stirred for 5 h at 20°C. Evaporation, addition of dry ether and filtration gave the hydrobromide of β-alanine PIV ester 5 : yield 9.4 g (88%); 1H nmr (60 MHz) δ 1.22 (s, 9H), 3.1 (br t, 2H), 3.47 (m, 2H), 5.80 (s, 2H), 7.90 (m, 3H, NH₃+).

α -(N-Hydroxy)-aminoisobutyric acid 23:

Oxaziridine <u>22</u> : p-Methoxybenzaldehyde (1.034 ml, 8.51 mmol) and methyl α-aminoisobutyrate (0.969 g, 8.51 mmol) in benzene solution (35 ml) were refluxed for 3 days. The benzene was distilled and replaced by CH_2Cl_2 (30 ml). MCPBA (1.75 g, 85% purity, 8.52 mmol) in CH_2Cl_2 solution (20 ml) was added dropwise. After 4 h of stirring at 20°C, the solvent was evaporated. Addition of n-hexane, filtration of MCBA, concentration and chromatography on silica gel (hexane-ether 7:3) gave the oxaziridine <u>22</u> : yield 1.32 g (61 %); ir (film) 1737, 1614, 1518, 1460, 1440, 1393 cm-1; 1H nmr (60 MHz) δ , 1.40 (s, 6H, C(CH_3)₂), 3.70 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 4.83 (s, 1H, H oxaziridine), 6.83 (d, 2H, J=8.5 Hz, Ph), 7.33 (d, 2H, J=8.5 Hz, Ph).

Hydrolysis : Oxaziridine <u>22</u> (6 g, 24 mmol) was heated at 100°C for 3 h in 12N HCl (114 ml). After washing with CH_2Cl_2 (3x50 ml), the aqueous phase was concentrated under vacuum. The residue was dissolved in acetone and dried over MgSO₄ : yield 2.65 g of hydrochloride <u>23</u>, 76.8%.

Free hydroxylamine : A mixture of hydrochloride <u>23</u> (0.534 g, 3.43 mmol), trimethylchlorosilane (1.73 ml, 3 equiv.) and $(C_2H_5)_3N$ (1.91 ml, 4 equiv.) in CHCl₃ solution (25 ml) was refluxed for 3 h (complete dissolution). After concentration, HCl. $(C_2H_5)_3N$ was precipitated by addition of dry ether. Filtration, evaporation and addition of C_2H_5OH (8 ml) led the acid <u>23</u> crystallize smoothly : yield 0.287 g (70%); mp 171-172°C; ms (CI-IB) 120 (100%, M⁺+1), 101 (15%, M⁺ -H₂O), 74 (75%, M⁺ -CO₂H).

Oxaziridines <u>9</u>:

 $R^1 = benzyl, \underline{ga}$: Aldehyde $\underline{4a}$ (0.5 g, 2.61 mmol) in CH₂Cl₂ solution (20 ml) was treated at room temperature with HBr. β -alaninate $\underline{5}$ (0.741 g, 2.61 mmol) in the presence of (C₂H₅)₃N (0.367 ml, 2.61 mmol) and 3Å molecular sieves. After 3 h, the mixture was filtered and concentrated under vacuum. Addition of ether, filtration of HBr.(C₂H₅)₃N and evaporation yielded crude imine <u>7a</u>. This material in CH₂Cl₂ solution (15 ml) was oxidized by dropwise addition of MCPBA (0.531 mg, 85 % purity, 2.60 mmol) in CH₂Cl₂ (10 ml). The

mixture was stirred for 2 h at 20°C. The solvent was removed under vacuum and the residue was chromatographed twice on silica gel (hexane - ether - $C_2H_5OAc 5:5:2$) to give pure oxaziridine <u>9a</u> as an oil : yield 0.202 g (20%); [α]_D-10.1° (c=0.81); ir 1750, 1670 cm-1; 1H nmr (200 MHz) δ (one diasteroisomer) 1.11 (d, 3H, J = 6.9 Hz, CH-C<u>H</u>₃), 1.23 (s, 9H, tC₄H₉), 2.56-2.86 (m, 3H, N-C<u>H</u>-C<u>H</u>₂-COO), 3.10-3.26 (m, 1H, N-C<u>H</u>-CH₂), 3.54 (s, 2H, PhCH₂), 3.96 (d, 1H, J=1.7 Hz, H oxaziridine), ~ 4.35 (qxdxd, 1H, J=6.9, 7.0, 1.7 Hz, C<u>H</u>-CH₃), 5.73 (br d, 1H, J = 7.0 Hz, NH), 5.77 (sharp ABq, J=12 Hz, 2H, COOCH₂O), 7.20-7.43 (m, 5H, Ph); ¹³C nmr (50 mHz) ppm (one diastereoisomer) 15.2 (CH-<u>C</u>H₃), 27.6 (C(<u>C</u>H₃)₃), 32.8 (N-<u>C</u>H₂-CH₂), 39.2 (<u>C(</u>CH₃)₃), 44.0 (Ph<u>C</u>H₂), 44.4 (<u>C</u>H-CH₃), 56.8 (N-CH₂-<u>C</u>H₂), 80.0 (COO<u>C</u>H₂O), 82.8 (C oxaziridine), 126.8, 128.8, 130.0 and 135.2 (Ph), 170.0 (CO amide), 171.6 (CO ester), 177.6 (CO ester); Anal. Calcd for C₂₀H₂₈O₆N₂ : C, 61.22; H, 7.14; O, 24.48; N, 7.14 : Found : C, 60,65; H, 7.15; O,25.13; N, 7.02.

*R*¹=*Phenoxymethyl*, <u>9b</u>: Oxaziridine <u>9b</u> was prepared according to the procedure described for <u>9a</u>, from 0.525 g (2.53 mmol) of aldehyde <u>4b</u>, 0.721 g (2.53 mmol) of HBr. β-alaninate_5, 0.35 ml of (C₂H₅)₃N and then 0.514 g of MCPBA (80% purity). Column chromatography on silica gel (hexane-ether-C₂H₅OAc-CH₂Cl₂, 5:5:2:) gave pure <u>9b</u> as an oil : yield 0.49 g (47%); [α]_D -0.85° (c=1.3); ir 3420, 1751, 1680, 1600, 1590, 1522, 1491 cm⁻¹; 1H nmr (200 MHz) δ (two diastereoisomers 60 : 40) 1.20 (s, 9H, tC₄H₉), 1.21 and 1.22 (two d, 3H, J=7 Hz, CH-CH₃), 2.58-2.90 (m, 3H, N-CH-CH₂), 3.10-3.32 (m, 1H, N-CH-CH₂), 4.01 (d, 1H, J=2.2 Hz, H oxaziridine), 4.42 (m, 1H, CH-CH₃), 4.46 and 4.47 (two s, 2H, PhOCH₂), 5.74 and 5.74 (s and sharp ABq, J= 12 Hz, 2H, COO CH₂O), 6.60 and 6.72 (two br d, 1H, NH, J=8 Hz), 6.90-7.09 (m, 3H, Ph), 7.24-7.38 (m, 2H, Ph); 13C nmr (50 MHz) ppm (two diasteroisomers) 15.15 and 15.29 (CH-<u>C</u>H₃), 26.78 (C(<u>C</u>H₃)₃), 32.51 (N-<u>C</u>H₂-CH₂), 38.69 (<u>C</u>(CH₃)₃), 43.91 and 43.99 (<u>C</u>H-CH₃), 55.95 and 56.11 (N-CH₂-<u>C</u>H₂), 67.33 (PhO<u>C</u>H₂), 79.52 and 79.56 (COO-<u>C</u>H₂-O), 81.94 and 82.41 (C oxaziridine), 114.77, 122.05, 129.65 and 157.18 (OPh), 168.17 (CO amide), 169.97 and 170.05 (CO ester), 177.05 (CO ester); Anal. Calcd for C₂₀H₂₈O₇N₂ : C,58.82; H, 6.86; O,27.45; N,6.86 : Found : C,58.51; H,6.97; O,27.49; N,6.72.

*R*¹ = 2,6-dimethoxyphenyl, *gc*: Oxaziridine <u>9c</u> was prepared according to the procedure described for <u>9a</u>, from 0.840 g (3.54 mmol) of aldehyde <u>4c</u>, 1.005 g (3.54 mmol) of HBr. β-alaninate <u>5</u>, 0.439 ml of (C₂H₅)₃N and then 0.732 g of MCPBA (80 % purity, 3.54 mmol). Column chromatography on silica gel (ether-hexane-C₂H₅OAc-CH₂Cl₂ 10:2:2:2) gave pure <u>9c</u> as an oil : yield 0.806 g (52%); [α]_D + 0.586° (c=0.87); ir 3420, 1755, 1670, 1600, 1509, 1472 cm⁻¹; 1H nmr (200 MHz) δ (two diasteroisomers 55:45) ~ 1.20 (two s + d, J=6 Hz, 9H + 3/2 H, tC₄H₉ + CH-C<u>H</u>₃), 1.46 (d, 3/2 H, J=6 Hz, CH-C<u>H</u>₃), 2.60-2.90 (m, 3H, N-C<u>H-CH₂), 3.25 and 3.57 (two m, 1H, N-C<u>H</u>-CH₂), 3.84 (two s + d, J=2 Hz, 6H + 1/2 H, (OCH₃)₂ + H oxaziridine), 4.18 (d, 1/2 H, J=2 Hz, H oxaziridine), 4.60 and 4.72 (two m, 1H, C<u>H</u>-CH₃), 5.75 (two sharp ABq, J=10 Hz, 2H, COOC<u>H₂O</u>), 5.90 and 6.42 (two br d, 1H, J=7 Hz, NH amide), 6.56 and 6.60 (two d, J=8 Hz, 2H, aryi), 7.30 (m, 1H, aryl); 13C nmr (50 MHz) ppm (two diasteroisomers) 14.56 and 18.03 (CH-C₂H₃), 27.05 (C(<u>C</u>H₃)₃), 32.93 and 34.05 (N-C<u>P</u>₂CH₂), 35.36 (<u>C</u>(CH₃)₃), 45.09 and 49.38 (<u>C</u>H-CH₃), 56.27 and 56.38 (N-CH₂-<u>C</u>H₂), 79.92 and 80.05 (COO<u>C</u>H₂O), 82.47 (C-oxaziridine), 104.43 (aryl), 128.55, 130.14, 130.50, 131.33, 131.57 and 133.48 (aryl), 157.87 and 158.00 (aryl), 166.32 (CO amide), 171.3 (CO ester), 173.19 (CO ester); Anal. Calcd for C₂₁H₃₀O₈N₂: C, 57.53; H,6.84; N,6.39 : Found : C,58.00; H,7.17; N,6.21.</u>

Oxaziridines 10:

 R^1 = benzyl, <u>10a</u>: A mixture of β -alanine (0.235 g, 2.67 mmol) and t-butylchlorodiphenylsilane (0.706 ml, 2.7 mmol) in CHCl₃ (6 ml) and CH₃CN (1 ml) was refluxed for 2 h (complete dissolution : <u>6</u>). (C₂H₅)₃N (0.371 ml, 2.67 mmol), then aldehyde <u>4a</u> (0.508 g, 2.67 mmol) and 3Å molecular sieves were added at room temperature. After 3 h of stirring, the solution was filtered and concentrated under vacuum. Addition of dry ether, filtration of HCl. (C₂H₅)₃N and evaporation yielded crude imine <u>8a</u>. This material, in CH₂Cl₂ solution (10 ml), was treated

with MCPBA (0.559 g, 85% purity, 2.67 mmol) in CH₂Cl₂ (10 ml, dropwise addition at 20°C). After 1.5 h of stirring, the solvent was removed under vacuum and the residue was chromatographed twice on silica gel (hexane-ether 7:3 and hexane-ether-C₂H₅OAc 5:5:3; Rf=0.45) to furnish <u>10a</u> as a gum : yield 0.586 g (60%); ir 1750, 1660 cm⁻¹; 1H nmr (200 MHz) δ (one diastereoisomer) 1.03 (d, 3H, J=6.8 Hz, CH-CH₃), 1.12 (s, 9H, tC₄H₉), 2.65-2.90 (m, 3H, N-C<u>H-CH₂</u>), 3.00-3.14 (m, 1H, N-C<u>H</u>-CH₂), 3.45 (s, 2H, PhC<u>H₂</u>), 3.91 (d, 1H, J=2 Hz, H oxaziridine), 4.28 (gxdxd, 1H, J=6.8, 2 and 8 Hz, C<u>H</u>-CH₃), 5.72 (d, 1H, J=8 Hz, NH), 7.15-7.80 (m, 15H, Ph).

R1=phenoxymethyl, <u>10b</u> : Oxaziridine <u>10b</u> was obtained according to the procedure described for <u>10a</u>, from 0.332 g (3.73 mmol) of β-alanine, 0.969 ml (3.8 mmol) of t-butylchlorodiphenylsilane, 0.519 ml of $(C_2H_5)_3N$, 0.772 g (3.73 mmol) of aldehyde <u>4b</u> and 0.659 g of MCPBA (85% purity). Two successive chromatographies on silica gel (hexane-ether 5:3 and hexane-ether-C₂H₅OAc 5:5:3; Rf=0.61) gave <u>10b</u> as a gum : yield 1.075 g (54%); ir 1745, 1680 cm⁻¹; ¹H nmr (60 MHz) δ 1.10 (s, 9H, tC₄H₉), 1.16 (d, 3H, J=7 Hz, CH,-C<u>H</u>₃), 2.66-3.00 (m, 3H, N-C<u>H</u>-CH₂), 3.03-3.33 (m, 1H, N-C<u>H</u>-CH₂), 3.96 (d, 1H, J=2 Hz, H oxaziridine), 4.23 (qxdxd, J=7, 8 and 2 Hz, 1H, C<u>H</u>-CH₃), 4.40 (s, 2H, PhOC<u>H₂</u>), 6.56 (br d, 1H, J=8 Hz, NH), 6.70-7.73 (m, 15H, Ph).

Oxaziridine 14 :

Crude imine <u>13</u> was prepared according to the procedure described for <u>10a</u>, from 0.534 g (6 mmol) of β -alanine, 1.592 ml (6 mmol) of t-butylchlorodiphenylsilane, 0.834 ml (6 mmol) of (C₂H₅)₃N and 0.555 ml (6 mmol) of isobutyraldehyde : yield 2.27g (98%); ir (film) 1730, 1670, 1590 (w), 1465, 1430, 1364 cm⁻¹; ¹H nmr (60 MHz) δ 1.01 (d, 6H, J=7 Hz, CH(C<u>H₃)₂</u>), 1.08 (s, 9H, tC₄H₉), 2.26 (m, 1H, C<u>H</u>(CH₃)₂), 2.73 (t, 2H, J=6 Hz, N-CH₂-C<u>H</u>₂), 3.63 (t, 2H, J=6 Hz, N-CH₂-CH₂), 7.26 and 7.30-7.80 (d, J=6 Hz and m, 1H + 10H, C<u>H</u>=N and Ph). *Oxidation* : MCPBA (1.255 g, 82% purity, 5.9 mmol) in CHCl₃ (30 ml) solution was added dropwise at 20°C to a CHCl₃ solution (50 ml) of the imine <u>13</u> (2.27 g, 5.9 mmol) and the mixture was stirred for 2 h. Evaporation, addition of hexane and filtration of MCBA gave crude oxaziridine <u>14</u> which was chromatographed on silica gel (hexane-ether-C₂H₅OAc 5:5:1): yield 1.682 g (71%); ¹H nmr (60 MHz) δ 0.93 (d, 6H, J=6 Hz, CH(C<u>H₃)₂</u>), 1.11 (s, 9H, tC₄H₉), 1.74 (m, 1H, C<u>H</u>(CH₃)₂), 2.73-3.00 (m, 3H, N-C<u>H</u>-C<u>H</u>₂), 3.00-3.32 (m, 1H, N-C<u>H</u>-CH₂), 3.56 (d, 1H, J=5 Hz, H oxaziridine), 7.17-7.80 (m, 10H, Ph).

Oxaziridine 15 :

Silyl ester <u>14</u> (0.36 g, 0.835 mmol) in 1:1 THF-H₂O solution (3 ml) was treated at 20°C with acetic acid (3 ml). After 24 h, the solvents were evaporated under reduced pressure and the residue was chromatographed on silica gel (hexane-ether-C₂H₅OAc 5:5:3) to furnish the free acid <u>15</u> : yield 60 mg (40 %); 1H nmr (60 MHz) δ 1.00 (d, 6H, J=7 Hz, CH(C<u>H</u>₃)₂), 1.63 (m, 1H, C<u>H</u>(CH₃)₂), 2.60-3.33 (m, 4H, N-C<u>H₂-CH₂), 3.60 (d, 1H, J=6 Hz, H oxaziridine), 10.40 (br s, 1H, COOH).</u>

Nitrone 16 :

Oxaziridine <u>15</u> (0.317 g, 0.8 mmol) in THF solution (4 ml) was treated at 0°C with cold methanol (9 ml) and aqueous NaHCO₃ (67 mg, 0.8 mmol in 3 ml of H₂O). After 2 h of stirring at 20°C, the organic solvents were evaporated and the aqueous layer was extracted twice with CH₂Cl₂. Concentration of the aqueous phase under high vacuum gave a white powder : yield 0.107 g (74 %); ir (KBr) 1580, 1410, 1310 (w), 1180, 1117 cm ⁻¹; 1H nmr (60 MHz, D₂O) δ 1.16 (d, 6H, J=7 Hz, CH(CH₃)₂), 2.76 (t, 2H, J=7 Hz, N-CH₂-CH₂), 3.13 (m, 1H, CH(CH₃)₂), 4.06 (t, 2H, J=7 Hz, N-CH₂-CH₂), 7.23 (d, 1H, J=8 Hz, CH=N→O); 13C nmr (20 MHz, CD₃OD) ppm 19.2 (CH(<u>C</u>H₃)₂), 27.5 (<u>C</u>H(CH₃)₂), 36.2 (N-<u>C</u>H₂-CH₂), 62.8 (N-CH₂-<u>C</u>H₂), 154.5 (<u>C</u>H=N→O), 179.3 (<u>C</u>OO-).

Nitrones 12 :

*R*1=benzyl; <u>12a</u>: Oxaziridine <u>10a</u>. (0.328 g, 0.64 mmol) in THF solution (3 ml) was treated at 0°C with CH₃OH (7 ml) and aqueous NaHCO₃ (53 mg, 0.64 mmol in 3 ml of H₂O). The mixture was allowed to reach slowly 20°C. After evaporation of the organic solvents under vacuum, the aqueous layer was extracted with CH₂Cl₂ (removal of HOSi(Ph)₂tC₄H₉). Lyophilization gave a powder which was washed with acetone and then ethanol: yield 88 mg (45%) ; ir (KBr) 3330, 1650, 1585, 1530, 1420 (br), 1175 (N→O) cm⁻¹; 1H nmr (60 MHz, D₂O + CD₃OD) δ 1.50 (d, 3H, J=7 Hz, CH-CH₃), 2.80 (t, 2H, J=7 Hz, N-CH₂-CH₂), 3.66 (s, 2H, PhCH₂), 4.06 (t, 2H, J=7 Hz, N-CH₂-CH₂), 4.83 (qxd, 1H, J=7 and 6 Hz, CH-CH₃), 7.11 (d, 1H, J=6 Hz, CH=N), 7.26 (s, 5H, Ph); 13C nmr (20 MHz, D₂O + CD₃OD) ppm 16.00 (CH-<u>C</u>H₃), 36.10 (N-<u>C</u>H₂-CH₂), 43.33 (Ph<u>C</u>H₂), 44.37 (<u>C</u>H-CH₃), 62.71 (N-CH₂-<u>C</u>H₂), 128.49, 130.09, 130.29 and 136.10 (Ph), 148.11 (<u>C</u>H=N→O), 175.21 (CO amide), 179.07 (COO⁻).

*R*1=phenoxymethyl; <u>12b</u>: Nitrone <u>12b</u> was obtained according to the procedure described for <u>12a</u>, from 0.296 g (0.55 mmol) of oxaziridine <u>10b</u> and 46 mg of NaHCO₃: yield 0.127 mg (73%); ¹H nmr (60 MHz, D₂O) δ 1.46 (d, 3H, J=7 Hz, CH-C<u>H₃</u>), 2.83 (t, 2H, J=7 Hz, N-CH₂-C<u>H₂</u>), 4.10 (t, 2H, J=7 Hz, N-C<u>H₂-CH₂</u>), 4.56 (s, 2H, PhOC<u>H₂</u>), 4.96 (qxd , J=7 and 6 Hz, 1H, C<u>H</u>-CH₃), 6.96 and 6.83-7.53 (d, J=6 Hz, and m, 1H+5H, C<u>H</u>=N→O and Ph); ¹3C nmr (20 MHz, DMSO-d₆) ppm 16.84 (CH-<u>C</u>H₃), 43.05 (<u>C</u>H-CH₃), 49.62 (N-<u>C</u>H₂-CH₂), 62.81 (N-CH₂-<u>C</u>H₂), 67.47 (PhO<u>C</u>H₂), 115.71, 122.68 and 130.72 (Ph), 143.23 (<u>C</u>H=N→O), 158.32 (OPh), 169.55 (CO amide), 176.26 (COO⁻).

Nitrones 18:

*R*¹=*benzyl*; <u>18a</u> : Hydroxylamine <u>20</u>²⁷ (0.4 g, 4.39 mmol) in CH₂Cl₂ (30 ml) was heated at 35°C in the presence of (C₂H₅)₃N (0.611 ml, 4.39 mmol) up to dissolution. Aldehyde <u>4a</u> (0.839 g, 1 equiv.) in CH₂Cl₂ solution (5 ml) was added dropwise and then molecular sieves (3Å, 500 mg) were introduced in the flask. The mixture was refluxed for 5 h. Filtration and concentration under vacuum gave crude <u>21a</u>. This material in C₂H₅OAc solution (15 ml) was treated with aqueous NaHCO₃ (0.35 g, 4.16 mmol, in 12 ml of H₂O). After 30 min of stirring at 20°C, the aqueous phase was lyophilized and the solid residue was washed with C₂H₅OH : yield 0.741 g (59%) of sodium salt <u>18a</u>; ir (KBr) 3515, 3250, 1640, 1610, 1550, 1403, 1364,1308, 1265 (N→O), 1188 (N→O), cm⁻¹; 1H nmr (200 MHz, D₂O) δ 1.38 (d, 3H, J=7.1 Hz, CH-CH₃), 3.61 (s, 2H, PhCH₂), 4.36 (ABd, 1H, J=15.5 Hz, N-C<u>H</u>-COO), 4.45 (ABd, 1H, J=15.5 Hz, N-C<u>H</u>-COO), 4.82 (m, 1H, C<u>H</u>-CH₃), 7.16 (d, 1H, J=6.5 Hz, C<u>H</u> = N→O), 7.28-7.45 (m, 5H, Ph); ¹³C nmr (20 MHz, D₂O) ppm 15.53 (CH-<u>C</u>H₃), 42.83 (<u>C</u>H-CH₃), 44.04 (Ph<u>C</u>H₂), 68.38 (N-<u>C</u>H₂-COO), 128.07, 129.69, 129.88 and 135.63 (Ph), 148.92 (<u>C</u>H=N→O), 172.06 (CO amide), 174.96 (COO⁻).

R1=phenoxymethyl; <u>18b</u> : The nitrone <u>18b</u> was obtained according to the procedure described for <u>18a</u>, from 0.2 g (2.2 mmol) of hydroxylamine <u>20</u>, 0.305 ml (2.2 mmol) of (C₂H₅)₃N, 0.455 g (1 equiv.) of aldehyde <u>4b</u> and then 0.166 g (0.9 equiv.) of NaHCO₃ : yield 0.263 g (40%) of sodium salts <u>18b</u>; ir (KBr) 1660, 1615, 1600, 1585, 1240 (N \rightarrow O), 1180 (N \rightarrow O) cm⁻¹; 1H nmr (200 MHz, D₂O) δ 1.39 (d, 3H, J=7 Hz, CH-CH₃), 4.38 (ABd, 1H, J=15.3 Hz, N-C<u>H</u>-COO), 4.48 (ABd, 1H, J=15.3 Hz, N-C<u>H</u>-COO), 4.64 (s, 2H, PhO-C<u>H</u>₂), 4.98 (dxd, 1H, J=7 and 6.3 Hz, C<u>H</u>-CH₃), 6.98-7.14 (m, 3H, Ph), 7.19 (d, 1H, J=6.3 Hz, C<u>H</u>=N \rightarrow O), 7.32-7.46 (m, 2H, Ph); ¹³C nmr (50 MHz, D₂O) ppm 15.23 (CH-CH₃), 42.94 (<u>C</u>H-CH₃), 66.77 (PhO<u>C</u>H₂), 67.88 (N-<u>C</u>H₂-COO), 114.88, 122.33 and 130.05 (Ph), 147.46 (<u>C</u>H=N \rightarrow O), 157.22 (OPh), 171.14 (CO amide), 171.39 (COO⁻); ms (CI-IB) 260 (M⁺ -CO₂+1).

Nitrone 19:

The nitrone 19a was prepared according to the procedure described from 21a. 0.132 g (1.11 mmol) of

hydroxylamine 23, 0.154 ml (1.11 mmol) of $(C_2H_5)_3N$ and 0.212 g (1 equiv.) of aldehyde 4a : yield 0.432 g (100 %) of triethylammonium salt of 19; ir 3420, 1665, 1620, 1500 cm⁻¹; 1H nmr (60 MHz) δ 1.20 (t, 9H, J=7 Hz, N(CH₂-CH₃)₃), 1.33 (d, 3H, J=6.5 Hz, CH-CH₃), 1.57 (br s, 6H, C(CH₃)₂), 2.93 (q, 6H, J=7 Hz, N(CH₂-CH₃)₃), 3.50 (s, 2H, PhCH₂), 4.80 (qxdxd, 1H, J=6.5, 6 and 8 Hz, CH-CH₃), 7.07 (d, 1H, J=6 Hz, CH=N→O), 7.26 (s, 5H, Ph), 7.87 (br d, 1H, J=8 Hz, NH); 1³C nmr (50 MHz), ppm 8.66 (N(CH₂-CH₃)₃), 15.99 (CH-CH₃), 24.84 (C(CH₃)₂), 43.24 (CH-CH₃), 43.51 (PhCH₂), 44.99 (N(CH₂-CH₃)₃), 77.31 (C(CH₃)₂), 126.71, 128.46, 129.04 and 134.06 (Ph), 135.12 (CH=N→O), 170.27 (CO amide), 175.40 (COOH). The sodium salt 19a was obtained following the procedure described for 18a; 1H nmr (60 MHz, D₂O) δ 1.49 (d, 3H, J=7 Hz, CH-CH₃), 1.66 (br s, 6H, C(CH₃)₂), 3.73 (s, 2H, PhCH₂), 5.00 (qxd, 1H, J=7 and 6.5 Hz, CH-CH₃), 7.33 (d, 1H, J=6.5 Hz, CH=N→O), 7.46 (s, 5H, Ph).

ACKNOWLEDGEMENTS

This work was generously supported by the Ministère de la Région Wallonne (Contract 6-141-36) and the Fonds National de la Recherche Scientifique (fellowship to J.M-B.). We thank Pham Thi Nga for excellent technical assistance. We are also grateful to Dr R. Laub and Prof. J. M. Frère for biological tests.

REFERENCES AND NOTES

- 1 G. L. Mandell and M. A. Sande, "The Pharmacological Basis of Therapeutics" (A. G. Gilman, L. S. Goodman, T. W. Rall and F. Murad, editors), Mc Millan Publishing Company, seventh edition, 1985, Chapter 50, pp.1115-1150.
- 2 R. B. Sykes and K. Bush, "Chemistry and Biology of β-Lactam Antibiotics" (R. B. Morin and M. Gorman, editors), Academic Press, 1982, Volume 3, Chapter 3, pp. 155-202.
- 3 W. Dürckheimer, J. Blumbach, R. Lattrell, and K. H. Scheunemann, <u>Angew. Chem. Internat. Edit. Engl.</u>, 1985, <u>24</u>, 180.
- N. E. Allen, D. B. Boyd, J. B. Campbell, J. B. Deeter, T. K. Elzey, B. J. Foster, L. D. Hatfield, J. N. Hobbs Jr,
 W. J. Homback, D. C. Hunden, N. D. Jones, M. D. Kinnick, J. M. Morin Jr, J. E. Munroe, J. K. Swartzendrubber, and D. G. Vogt, <u>Tetrahedron</u>, 1989, <u>45</u>, 1905.
- 5 R. J. Ternansky and S. E. Draheim, "Recent Advances in the Chemistry of β-Lactam Antibiotics" (P. H. Bentley and R. Southgate, editors), <u>Chem. Soc. Special Public.</u>, 1989, <u>70</u>, Chapter 9, pp. 139-156.
- 6 J. Marchand-Brynaert, Z. Bounkhala-Khrouz, J. C. Carretero, J. Davies, D. Ferroud, B. J. van Keulen, B. Serckx-Poncin, and L. Ghosez, "Recent Advances in the Chemistry of β-Lactam Antibiotics" (P. H. Bentley and R. Southgate, editors), <u>Chem. Soc. Special Public</u>, 1989, <u>70</u>, Chapter 10, pp. 157-170.
- 7 J. Marchand-Brynaert, H. Vanlierde, and L. Ghosez, Bull. Soc. Chim. Belg., 1988, 97, 1081.
- 8 J. Marchand-Brynaert, Z. Bounkhala-Khrouz, B. J. van Keulen, H. Vanlierde, and L. Ghosez, <u>israël J.</u> <u>Chem.</u>, 1989, <u>29</u>, (accepted for publication).
- 9 P. Milliet and X. Lusinchi, Tetrahedron, 1974, 30, 2825.
- 10 S. E. Dinizo and D. S. Watt, J. Am. Chem. Soc., 1975, 97, 6900.
- 11 S. R. Woulfe and M. J. Miller, J. Med. Chem., 1985, 28, 1447.
- 12 D. B. Boyd, C. Eigenbrot, J. M. Indelicato, M. J. Miller, C. E. Pasini, and S. R. Woulfe, <u>J. Med. Chem.</u>, 1987, <u>30</u>, 528.
- 13 W. D. Lubell and H. Rapoport, J. Am. Chem. Soc., 1987, 109, 236.
- 14 F. A. Davis, M. C. Weismiller, G. Sankar Lal, B. Chi Chen, and R. M. Przeslawski, <u>Tetrahedron Lett.</u>, 1989, <u>30</u>, 1613.
- 15 H. Ferres, Chem. and Ind. (London), 1980, 435.

- 16 The esters were tested as such and after incubation for 2 h at 37°C in the presence of human plasma. The testing was conducted as described by L. D. Thrupp, "Antibiotics in Laboratory Medicine" (V. Lorian, editor), Williams and Wilkins, Baltimore-London, 1980, Chapter 4, pp. 73-113. The bacterial strains were : E. coli, KI. pneumoniae, Ps. aeruginosa, Pr. mirabilis, Ser. marcescens, Sal. typhimurium, St. aureus, Str. pyogenes, and Pr. vulgaris.
- 17 M. J. Haddadin and J.P. Freeman, "Small Ring Heterocycles", (A. Hassner, editor), John Wiley and Sons in the series "The Chemistry of Heterocyclic Compounds", 1985, <u>42</u> (part 3), Chapter 3, pp.283-350.
- 18 O. J. Gonzales, D. E. Gallis, and D. R. Crist, <u>J. Org. Chem.</u>, 1986, <u>51</u>, 3266.
- 19 W. D. Emmons, Chem. Heterocycl. Comp. 1964, 19, 624.
- 20 P. Milliet and X. Lusinchi, Tetrahedron, 1971, 27, 3763.
- 21 J. S. Splitter, T. M. Su, H. Ono, and M. Calvin, J. Am. Chem. Soc., 1971, 93, 4075.
- 22 M. Lalonde and T.H. Chan, Synthesis, 1985, 817.
- 23 P. Duhamel, D. Bénard, and J.C. Plaquevent, Tetrahedron Lett., 1985, 26, 6065.
- 24 E. Breuer, "The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives" (S. Patai, editor), Wiley, 1982 (Part 1), pp. 459-564.
- 25 J. A. Warshaw, D. E. Gallis, B. J. Acken, O. J. Gonzales, and D. R. Crist, <u>J. Org. Chem.</u>, 1989, <u>54</u>, 1736.
- 26 G. Tennant, "Comprehensive Organic Chemistry" (D. Barton and W. D. Ollis, editors), Pergamon Press, 1989, Vol. 2, Chap. 8, pp. 499-513.
- 27 E. Buehler and G. B. Brown, J. Org. Chem., 1967, 32, 265.
- 28 T. Polonsky and A. Chimiak, Tetrahedron Lett., 1974, 2453.
- 29 The purified (protein homogeneity) soluble enzymes exerted by Streptomyces R61 and Actinomadura R39 were used for this study as described by J. M. Frère and B. Joris, <u>CRC Critical Rev. Microb.</u>, 1985, <u>11</u>, 299.
- 30 β-Lactamases from Bacillus licheniformis 749, from Bacillus cereus 5/B/6 and from Enterobacter cloacae P99 were used for this study as described by J. Marchand-Brynaert, R. Laub, F. De Meester and J. M. Frère, <u>Eur. J. Med. Chem.</u>, 1988, <u>23</u>, 561.
- 31 Oxaziridine <u>1b</u> could also suffer hydrolysis giving hydroxylamine <u>23;</u> we have controlled that this compound was devoid of activity in our tests.
- 32 B. Joris, J. M. Ghuysen, G. Dive, A. Renard, O. Diddeberg, P. Charlier, J. M. Frère, J. A. Kelly, J. C. Boyington, P. C. Moews, and R. Knox, <u>Biochem. J.</u>, 1988, <u>250</u>, 313.

Received, 18th September, 1989