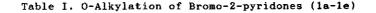
A FACILE SYNTHESIS OF BROMO-2-ALKOXYPYRIDINES

Min-Jen Shiao^{*} and Kai-Yih Tarng Institute of Chemistry, Academia Sinica Taipei, Taiwan, Republic of China

<u>Abstract</u>- Several bromo-2-methoxypyridines 2a-2e and bromo-2benzyloxypyridines 2a'-2e' were synthesized by the reaction of bromo-substituted 2-pyridones 1 which were reacted with alkyl halides in the presence of silver carbonate in benzene.

Bromo-2-alkoxypyridines are usable as starting materials for syntheses of steroids,¹ bipyridine derivatives,^{2,3} and other medicinally interesting compounds.⁴⁻⁶ As for syntheses of bromo-2-alkoxypyridines, the following two general methods are well known: (I) the mono-displacement reaction of dibromopyridines or bromochloropyridines using alcohol or dimethylformamide as solvent;⁷⁻⁹ (II) bromination of 2-alkoxypyridines.⁶⁻⁸ In the former case, some of their starting materials are either not conveniently prepared¹⁰ or not available. In addition, disubstituted derivatives are consistently formed as minor by-products.^{8,9} The second method is limited only to the preparation of 3-bromo-, 5-bromo- or 3,5-dibromo-2-alkoxypyridines, other bromo congeners being not obtainable.¹¹

Hopkin et al.¹² have reported that the ambident anion of 2-pyridone generated by silver carbonate can be selectively O-alkylated with alkyl halides in nonpolar solvent such as benzene. In this paper we wish to report the successful application of this method to the preparation of several bromo-2-methoxypyridines (2a-2e) and bromo-2-benzyloxypyridines (2a'-2e') from the corresponding bromopyridines (1a-1e).


3-Bromo-2-pyridone (1a),¹³ 5-bromo-2- pyridone $(1b)^{14,15}$ and 3,5-dibromo-2pyridone (1d),¹⁵ 6-bromo-2-pyridone (1c),¹⁶ and 5-bromo-6-methyl-2-pyridone $(1e)^{17}$ were prepared from 3-bromopyridine, 2-pyridone, 2,6-dibromopyridine, and 6-amino-2-picoline, respectively, according to the published methods. The alkyl halides used for these reactions were methyl iodide and benzyl bromide.

The reaction was carried out by the following general procedure: a mixture of a bromo-2-pyridone (1) (21 mmol), silver carbonate (14 mmol) and alkyl halide (25 mmol) in benzene (35 ml) was stirred at $40-50^{\circ}$ C for 24 h in the dark. The product

was purified by chromatography on silica gel with hexane-ethyl acetate (2:1) and vacuum distillation.

The yields of O-alkylation of 1 were found to be very high (93-99%) (Table I), and superior to those obtained by other methods; the reported yields from other routes are also shown in Table I. The preparation of bromo-2-benzyloxypyridines (2a'-2e') from the corresponding (1a-1e) and benzyl bromide also was achieved in high yields (95-99%) (Table I).

In conclusion, this paper has described a convenient and high yield method for the synthesis of brominated 2-alkoxypyridines.

$\frac{R_2X, Ag_2CO_3, Benzene, 40-5i}{(R_2X = MeI, PhCH_2Br)}$	$\xrightarrow{0^{0}C, 24 h} Br \bigcirc R_{1} N$	OR2
1	2 (yield)	2' (yield)
$\mathbf{R}_{1} = \mathbf{H}$	$R_1 = H$, $R_2 = Me$	$R_1 = H$, $R_2 = CH_2Ph$
1a 3-Br	2a: 3-Br (96%) ^{a)}	2a': 3-Br (95%)
1b: 5-Br	2b: 5-Br (95%) ^{b)}	2b': 5-Br (95%)
1c: 6-Br	2c: 6-Br (93%)	2c': 6-Br (99%)
1d: 3,5-Br ₂	2d: 3,5-Br ₂ (96%) ^{c)}	2d':3,5-Br ₂ (98%)
Ri = Me	$R_1 = Me, R_2 = Me$	$R_1 = Me, R_2 = CH_2Ph$
1e: 5-Br	2e: 5-Br (90%)	2e': 5-Br (96%)

a) Reported yield from 3-bromo-2-chloropyridine:¹⁰ 63%

b) Reported yield from 2-methoxypyridine:⁸ 49%

c) Reported yield from 3,5-dibromo-2-chloropyridine⁸ and 2-methoxypyridine:⁶ 75 and 71%, respectivelly.

	mp(⁰ C) ^{a)} or	Ms(70eV)	Molecular formula	Analysis(%) Found(Calcd)			¹ H-Nmr(CDCl ₃ /TMS)
2, 2')	bp(⁰ C)/torr	m/z(%)	or lit. mp(⁰ C)	c	Н	N	δ, J(Hz)
28	140-143/9	189(M*+2,66);188 (100);187(M*,79);186 (90);159(53);157(56); 79(90)	C ₆ H ₆ BrON	38.14 (38.32) (3.20 3.22)	7.68 (7.45)	3.91(s,3H); 6.60(dd,J=8.0 and 4.8 Hz,1H,H-5); 7.74(dd, J=8.0 and 2.0 Hz,1H,H-4); 8.02 (dd,J=4.8 and 2.0 Hz,1H,H-6)
2Ъ	194-194.5/760	189(M*+2,76);188 (100);187(M*,76);186 (98);159(50);157(47); 78(80)	C ₆ H ₆ BrON	38.36 (38.32) (3.04 (3.22)	7.42 (7.45)	3.86(s,3H); 6.60(d,J=8 Hz,1H, H-3); 7.57(dd,J=8.0 and 4.0 Hz,1H,H-4); 8.17(d,J=4.0 Hz,1H,H-6).
2c	75-78/12	189(M ⁺ +2,70);188 (100);187(M ⁺ ,65);159 (46);157(40);78(70)	C ₆ H ₆ BrON	38.30 (38.32) (3.16 3.22)	7.59 (7.45)	3.84(s,3H); 6.56(dd,J=8.0 and 1.0 Hz,1H,H-5); 6.93(dd, J=7.4 and 1.0 Hz,1H,H-3); 7.27 (dd,J=7.4 and 8.0 Hz,1H,H-4)
2d	46.5-48.5	269(M ⁺ +4,40);267(M ⁺ +2,82);265(M ⁺ ,38); 186(25);184(23);79 (40)	48.5-49 ⁸ 49-51 ⁶				3.94(g,3H); 7.89(d,J=2.0 Hz,1H H-4); 8.12(d,J=2.0 Hz,1H,H-6)
2e	95-96/6	203(M ⁺ +2,37);201(M ⁺ , 39);173(27);171(30); 119(30);117(30);92 (100)	C7H8BrON	41.34 (41.61) (3.78 (3.99)	6.81 (6.93)	2.51(s,3H); 3.89(s,3H); 6.45 (d,J±8.6 Hz,1H,H-3); 7.60(¢, J=8.6 Hz,1H,H-4)
2a '	175-178/6	265(M ⁺ ,12);263(M ⁺ -2, 14);159(10);157(9); 91(100)	C _{12H10} Bron	54.51 (54.57) (3.74 (3.82)	5.46 (5.30)	5.44(8,2H); 6.64(dd,J=8.0 and 4.8 Hz, 1H,H-5); 7.20-7.60(m, 5H,aromatic H); 7.78(dd,J= 8.0 and 2.0 Hz,1H,H-6)
2b'	55-57	265(M ⁺ ,11);263(M ⁺ -2, 10);91(100)	56-58 ⁵				5.34(s,2H); 6.73(d,J=8.0 Hz,1H H-3); 7.38(m,5H,aromatic H); 7.66(dd,J=8.0 and 2.0 Hz, 1H,H-4); 8.21(d,J=2.0 Hz,1H,H+
2c'	13-15	265(M ⁺ ,7.3);263(M ⁺ -2, 7.1);159(4.9);157 (5.2);91(100)	C ₁₂ H ₁₀ Bron	54.43 (54.57) (3.96 (3.82)	5.21 (5.30)	5.36(s,2H); 6.73(dd,J=8.0 and 1.0 Hz,1H,H-5); 7.07(dd,J=8.0 and 1.0 Hz,1H,H-3); 7.24~7.45 (m,6H,aromatic H and H-4)

Table II. Some Physical Properties of Bromo-2-alkoxypyridines (2 and 2')

2d'	84-86	345(M*+4,23);343 (M*+2,47);341(M*,25); 264(14);262(16);91 (100)	C ₁₂ H9Br ₂ ON	42.26 (42.01)	2.48 (2.64)	4.36 (4.08)	5.32(s,2H); 7.83(d,J=2.0 Hz, 1H,H-4); 7.31-7.48(m,5H,aromatic H); 8.10(d,J=2.0 Hz,1H,H-6)
2e'	185-187/6	279(M*+2,9.3);277(M*, 9.8);202(4.4);200 (4.6);173(7.6);171 (8.4);119(5.9);117 (5.4);91(100)	C ₁₃ H ₁₂ BrON	56.03 (56.13)	4.47 (4.35)	5.18 (5.04)	2.53(s,3H); 5.32(s,2H); 6.48 (d,J \pm 8.6 Hz,1H,H-3); 7.30- 7.45(m,5H,aromatic H); 7.57 (d,J=8.6 Hz,1H,H-4)

a) Not corrected.

1

ACKNOWLEDGEMENT

We thank the National Science Council of the Republic of China for financial support.

EXPERIMENTAL

Melting points are uncorrected. The ¹H-nmr spectra were recorded on a Bruker AW80 and MSL 200 spectrometer. Mass spectra were obtained from a Hewlett-Packard 5995 GC/MS system at 70ev. Elemental analyses were performed on a Perkin-Elmer 2400 Elemental Analyzer. 2-Pyridone and 2-methoxypyridine were obtained from the Aldrich Chemical Company. Silver carbonate was prepared by known procedures.¹⁸

Bromo-2-alkoxypyridines 2(2'): General Procedure:

2-Pyridone 1 (21 mmol), silver carbonate (14 mmol), and alkyl halide (25 mmol) were stirred for 24 h in 35 ml of benzene at 40-50 $^{\circ}$ C in the dark. The mixture was cooled in an ice bath and silver salt was removed by filtration. The filtrate was washed with 50 ml of 2% sodium bicarbonate solution and then twice with 25 ml portions of water. The benzene was removed by evaporation at atmospheric pressure. The remaining liquid was chromatographed on silica gel (hexane/ethyl acetate, 2/1). The pure product was obtained by bulb-to-bulb distillation. Their structures were determined by ir, nmr, ms, and elemental analysis (see Table II).

REFERENCES

- 1 M.-J. Shiao, <u>J. Org. Chem.</u>, 1982, <u>47</u>, 5189.
- 2 W.-P. Fang, P. Shieh, and M.-J. Shiao, <u>Heterocycles</u>, 1986, 24, 1585.
- 3 M.-J. Shiao, P. Shieh, and J.-S. Lai, <u>Synth. Commun.</u>, 1988, <u>18</u>, 1397.
- 4 M.-J. Shiao, P. Shieh, and J.-S. Lai, <u>J. Chinese Chem. Soc.</u>, 1986, <u>35</u>, 233.
- 5 W. A. Lott and E. Shaw, <u>J. Am. Chem. Soc.</u>, 1949, <u>71</u>, 70.
- 6 T. M. Bargar, J. K. Dulworth, M. T. Kenny, R. Massad, J. K. Daniel, T. Wilson, and R. N., Sargent, <u>J. Med. Chem.</u>, 1986, <u>29</u>, 1590.
- 7 L. Testaferri, M. Tieco, M. Tingoli, D. Bartoli, and A. Massoli, <u>Tetrahedron</u>, 1985, <u>41</u>, 1373.
- 8 E. Spinner and J. C. B. White, <u>J. Chem. Soc.(B)</u>, 1966,991.

- 9 D. S. Noyce and J. A. Virgilio, <u>J. Org. Chem.</u>, 1973, <u>38</u>, 2660.
- 10 H. J. Den Hertog and N. A. I. M. Boelrijk, <u>Rec. Trav. Chim. Pavs-Bas</u>, 1951,<u>70</u>, 578.
- 11 Using ref. 15 for the bromination of pyridone for the formation of 3,5-dibromo-2-pyridone (1d), we also have isolated products of 3-bromo-2-pyridone and 5-bromo-2-pyridone in a yield of less than 15%, respectively.
- 12 G. C. Hopkins, J. P. Jonak, H. J. Minnemeyer, and H. Tieckelmann, <u>J. Org.</u> <u>Chem.</u>, 1967, <u>32</u>, 4040.
- E. Matsumara and M. Ariga, <u>Bull. Chem. Soc. Jpn.</u>, 1973, <u>46</u>, 3144; B.
 Weinstein, <u>J. Org. Chem.</u>, 1958, <u>23</u>, 1616.
- B. A. Fox and T. L. Threlfall, "Organic Syntheses", Coll. Vol. V, p.346, 1973; O. Seide, <u>Ber.</u>, 1924, <u>57</u>, 1802.
- 15 O. S. Tee and M. Paventi, <u>J. Am. Chem. Soc.</u>, 1982, <u>104</u>, 4142.
- 16 J. P. Wibaut, P. W. Waayman, and J. VanDijk, <u>Rec. Trav. Chim. Pays-Bas</u>, 1940, 59, 202.
- 17 R. Adams and A. W. Schrecker, <u>J. Am. Chem. Soc.</u>, 1949, <u>71</u>, 1186.
- 18 C. M. McCloskey and G. H. Coleman, "Organic Syntheses", Coll. Vol. III, p.434, 1955.

Received, 27th July, 1989