NOVEL SYNTHETIC ROUTE TO PYRIDINE-2(1 \underline{H})-THIONES: UNEXPECTED PRODUCTS OF THE REACTION OF β -PHENETHYLIDENEMALONONITRILES WITH ARYLMETHYLENE-CYANOTHIOACETAMIDES

Galal Eldin Hamza Elgemeie

Chemistry Department, Faculty of Science, Bani Suef, Egypt

<u>Abstract</u>- A novel synthesis of 3-cyanopyridine-2(1 $\underline{\mathbb{H}}$)-thione derivatives utilizing arylmethylenecyanothioacetamides and β -phenethylidenemalononitriles as starting components is described.

 α,β -Unsaturated nitriles are versatile reagents which have been extensively utilized in heterocyclic synthesis. 1-3 Recently, we reported diverse approaches for the synthesis of pyridine-2(1<u>H</u>)-thiones and their condensed derivatives <u>via</u> reactions of arylmethylenecyanothioacetamides with appropriate active methylene compounds. 4,5 One of these papers have described the novel reaction of cycloalkylidenemalononitriles <u>1</u> with arylmethylenecyanothioacetamides <u>2</u> producing the condensed pyridine-2(1<u>H</u>)-thiones <u>3</u> of the unexpected structure. We have explained the formation of <u>3</u> by a reaction sequence initiated by the exchange reaction between the cycloalkylidene group of <u>1</u> and the arylmethylene group of <u>2</u>. In order to explore the possibility that this unusual process may occur with other classes of alkylidenemalononitriles, we investigated reaction of <u>B</u>-phenethylidenemalononitriles <u>4</u> with arylmethylenecyanothioacetamides <u>2</u>.

We treated β -phenethylidenemalononitriles $\underline{4}$ with one equivalent of arylmethylenecyanothioacetamides $\underline{2}$ in refluxing ethanol for 2 h and obtained the corresponding pyridine-2(1 $\underline{\mathrm{H}}$)-thiones $\underline{5}$ in moderate yields (Table I). The structures of $\underline{5}$ were established on the basis of their elemental analyses and ms, ir and $^1\mathrm{H}$ nmr spectroscopies (Table II). In accordance with the mechanism suggested for the formation of $\underline{3}$ from $\underline{1}$ and $\underline{2}$, 6 the reaction may be rationalized by the following sequence. The four-membered cycloadduct $\underline{7}$ is initially formed from $\underline{4}$ and $\underline{2}$ via the transient complex $\underline{6}$, and $\underline{7}$ consecutively collapses to arylmethylenemalononitriles $\underline{8}$ and β -phenethylidenecyanothioacetamides $\underline{9}$. The subsequent reaction occurs between the

newly formed $\underline{8}$ and $\underline{9}$ to give the intermediate $\underline{10}$ via addition of the active methyl group of $\underline{9}$ to the activated double bond of $\underline{8}$. The Michael adduct $\underline{10}$ then cyclizes \underline{via} the elimination of malononitrile to give the dihydropyridine $\underline{11}$ which is oxidized under the reaction conditions to yield the pyridine- $2(1\underline{H})$ -thiones $\underline{5}$.

EXPERIMENTAL

All melting points are uncorrected. Ir spectra were obtained (KBr) on a Pye Unicam Spectra-1000 spectrophotometer or on a Shimadzu IR 200. ¹H Nmr spectra were measured on a Wilmad 270 MHz in DMSO-d₆ using TMS as internal standard and chemical shifts are expressed as 6 ppm. Mass spectra were measured on a Mass spectrometer MS 30 (AEI) at 70 ev. Analytical data were obtained from the Microanalytical Data Centre at Cairo University.

Compounds 4a-c were prepared following literature procedures.

4,6-Diary1-3-cyanopyridine-2($1\underline{H}$)-thiones 5a-p

To a mixture of 0.01 mol of $\underline{4}$ and 0.01 mol of $\underline{2}$ in ethanol (50 ml), piperidine (3 drops) is added. The mixture is heated under reflux for 3 h, and then allowed to stand overnight. The resulting solid is collected by filtration and crystallized from the proper solvent (cf. Table 1).

Table I: List of the Compounds 5a-p

Compound	Solvent of cryst.	mp (°C)	Yield (%)	Mol. Formula	Found Calcd C	Analysis (%)		(m/z)
						Н	N	
<u>5a</u>	сн ₃ он	216-218	55	C ₁₈ H ₁₁ C1N ₂ S	67.2	3.8	8.4	322
					67.0	3.4	8.7	
<u>5 b</u>	СН ₃ ОН	192-194	48	$C_{19}^{H}_{14}^{N}_{2}^{S}$	75.2	4.8	8.9	302
					75.5	4.6	9.3	
<u>5c</u>	с ₂ н ₅ он	224-226	55	$C_{19}H_{14}N_{2}OS$	71.5	4.0	8.4	318
					71.7	4.4	8.8	
<u>5d</u>	С ₂ Н ₅ ОН	210-212	50	$^{\mathrm{C}}_{16}^{\mathrm{H}}_{10}^{\mathrm{N}}_{2}^{\mathrm{OS}}$	68.8	4.0	9.7	
					69.1	3.6	10.1	
<u>5e</u>	С ₂ н ₅ Он	226-228	54	$^{\text{C}}_{16}^{\text{H}}_{10}^{\text{N}}_{2}^{\text{S}}_{2}$	64.9	3.7	9.1	
					65.3	3.4	9.5	
<u>5 f</u>	dioxane	206-208	48	$C_{19}H_{13}C1N_2S$	67.5	3.6	8.5	
					67.8	3.9	8.5	
<u>5 g</u>	с ₂ н ₅ он	211	50	$^{\mathrm{C}}_{20}^{\mathrm{H}}_{16}^{\mathrm{N}}_{2}^{\mathrm{S}}$	75.8	4.8	8.6	316
					75.9	5.1	8.9	

Table I: Cont.

Compound	Solvent of Cryst.	mp (°C)	Yield (%)	Mol. Formula	Found Calcd	Analysis (%)		(m/z)
					C	Н	N	
<u>5h</u>	сн _з он	232	40	C ₂₀ H ₁₆ N ₂ OS	71.9	5.0	8.8	332
					72.3	4.8	8.4	
<u>5i</u>	с ₂ н ₅ он	196-198	40	$^{\rm C}17^{\rm H}12^{\rm N}2^{\rm OS}$	70.2	4.4	9.2	
					69.9	4.1	9.6	
<u>5j</u>	с ₂ н ₅ он	210-212	50	$^{\mathrm{C}}_{17}^{\mathrm{H}}_{12}^{\mathrm{N}}_{2}^{\mathrm{S}}_{2}$	66.0	3.6	8.8	308
					66.2	3.9	9.1	
<u>5k</u>	$c_2H_5OH-DMF$	220-222	60	$^{\rm C}_{19}^{\rm H}_{14}^{\rm N}_{2}^{\rm OS}$	71.3	4.0	8.4	318
					71.7	4.4	8.8	
<u>51</u>	сн _з он	280-282	44	$c_{19}H_{13}cln_2os$	64.4	3.5	8.1	352
					64.7	3.7	7.9	
<u>5m</u>	с ₂ н ₅ он	234-236	46	C ₂₀ H ₁₆ N ₂ OS	72.5	5.1	8.0	
					72.5	4.8	8.4	
<u>5n</u>	CH ₃ OH-DMF	248	50	$^{\mathrm{C}}_{20}^{\mathrm{H}}_{16}^{\mathrm{N}}_{2}^{\mathrm{O}}_{2}^{\mathrm{S}}$	69.3	4.3	8.2	348
					69.0	4.6	8.0	
<u>50</u>	сн3он	228-230	60	$^{\mathrm{C}}_{17}^{\mathrm{H}}_{12}^{\mathrm{N}}_{2}^{\mathrm{O}}_{2}^{\mathrm{S}}$	66.0	4.2	8.7	
					66.2	3.9	9.1	
<u>5 p</u>	с ₂ н ₅ он	234-236	64	$^{\mathrm{C}}_{17}^{\mathrm{H}}_{12}^{\mathrm{N}}_{2}^{\mathrm{OS}}_{2}$	62.9	3.5	8.3	324
					63.0	3.7	8.6	

Table II: Spectral Data for Compounds Listed in Table I

Compound 5a	Ir (cm ⁻¹) (Selected bands)	¹ н Nmr (6 ppm)			
	3320, 3200 (NH); 2225 (CN)	7.34 (s, 1H, pyridine 5-H); 7.40-8.10 (m,			
		9H, C_6H_5 and C_6H_4); 14.10 (br s, 1H, NH)			
<u>5b</u>	3300, 3170 (NH); 2230 (CN)	2.5 (s, 3H, CH ₃); 7.06 (s, 1H, pyridine			
		5-H); 7.10-8.10 (m, 9H, $C_6 H_5$ and $C_6 H_4$);			
		14.10 (br s, 1H, NH)			
<u>5c</u>	3330, 3210 (NH); 2225 (CN)	3.92 (s, 3H, OCH ₃); 7.09 (s, 1H, pyridine			
		5-H); 7.42-8.08 (m, 9H, $C_6 H_5$ and $C_6 H_4$);			
		14.00 (br s, 1H, NH)			

Table II: Cont.

Compound	Ir (cm ⁻¹) (Selected bands)	1 H Nmr (6 ppm)
<u>5d</u>	3320, 3250 (NH); 2220 (CN)	6.82 (m, 1H, furan 4-H); 7.30 (s, 1H,
		pyridine 5-H); 7.46-8.10 (m, 7H, C ₆ H ₅
		and furan 3,5-H); 13.90 (br s, 1H, NH)
<u>5f</u>	3350, 3220 (NH); 2230 (CN)	2.55 (s, 3H, CH_3); 7.08 (s, 1H , pyridine
		5-H); 7.20-8.00 (m, 8H, 2C ₆ H ₄); 14.10
		(br s, 1H, NH)
<u>5 g</u>	3330, 3220 (NH); 2220 (CN)	2.56 (s, 3H, CH ₃); 2.58 (s, 3H, CH ₃);
		7.10 (s, 1H, pyridine 5-H); 7.18-8.10
		(m, 8H, 2C ₆ H ₄); 13.70 (br s, 1H, NH)
<u>5h</u>	3350, 3260 (NH); 2220 (CN)	2.58 (s, 3H, CH ₃); 3.94 (s, 3H, OCH ₃);
		7.06 (s, 1H, pyridine 5-H); 7.15-8.08
		(m, 8H, $2C_6H_4$); 14.00 (br s, $1H$, NH)
<u>5k</u>	3220 (NH); 2220 (CN)	3.90 (s, 3H, OCH ₃); 7.10 (s, 1H, pyrid-
		ine 5-H); $7.13-8.10$ (m, $9H$, C_6H_5 and
		C ₆ H ₄); 14.12 (br s, 1H, NH)
<u>51</u>	3350 (NH); 2225 (CN)	3.85 (s, 3H, OCH ₃); 7.16 (s, 1H, pyrid-
		ine 5-H); 7.32-8.06 (m, 8H, 2C ₆ H ₄); 13.88
		(br s, 1H, NH)

REFERENCES

- 1. G. E. H. Elgemeie, and F. A. Aal, <u>Heterocycles</u>, 1986, <u>24</u>, 349.
- 2. G. E. H. Elgemeie, H. A. Elfahham, and M. H. Elnagdi, <u>Heterocycles</u>, 1983, <u>20</u>, 519 and references cited therein.
- 3. G. E. H. Elgemeie, H. A. Elfahham, S. Elgamal, and M. H. Elnagdi, <u>Heterocycles</u>, 1985, 23, 1999.
- 4. G. E. H. Elgemeie, H. A. Elfahham, and H. A. Nabey, <u>Bull. Chem. Soc. Japan</u>, 1988, <u>61</u>, 4431.
- 5. G. E. H. Elgemeie, H. A. Elfahham, and R. Mekhamer, Sulfur Letter, 1988, 8, 187.
- 6. G. E. H. Elgemeie, H. A. Regaila, and N. Shehata, <u>J. Chem. Soc., Perkin Trans. I, 1989</u>, in press.
- 7. D. T. Mowry, <u>J. Am. Chem. Soc.</u>, 1945, <u>67</u>, 1050.

Received, 28th August, 1989