PHOSPHORUS PENTOXIDE IN ORGANIC SYNTHESIS XXXX. SYNTHESIS OF 3-ARYL-3,7-DIHYDRO-4H-PYRROLO[2,3-d]PYRIMIDIN-4-ONES

Khalid Mohamed Hassan Hilmy¹, Jørgen Mogensen, Anker Jørgensen, and Erik B. Pedersen* Department of Chemistry, Odense University, DK-5230 Odense M, Denmark

<u>Abstract</u> - Pyrrolo[2,3-d]pyrimidin-4(3<u>H</u>)-ones (2**a**-j) were prepared in 18-51% yields by heating 2-acetylamino-3-pyrrolocarbonitriles (1) with a mixture of phosphorus pentoxide, $\underline{N}, \underline{N}$ -dimethylcyclohexylamine hydrochloride, water, and an appropriate arylamine hydrochloride at 180°C.

Methyl or ethyl 2-amino-3-pyrrolecarboxylates are obviously promising as the starting materials for the synthesis of pyrrolo[2,3-<u>d</u>]pyrimidin-4(3<u>H</u>)-ones by the method similar to that used in the synthesis of 4(3<u>H</u>)-quinolinones from antranilic acid derivatives. However, the synthetic methods leading to methyl or ethyl 2-amino-3-pyrrolecarboxylate derivatives are very scarcely reported in the literature. Gewald and coworkers have reported² the synthesis of 2-amino-3,4-diethoxy-carbonylpyrrole. Its reaction with 4-chloroacetanilide in the presence of phosphorus oxychloride was shown to give 3-(4-chlorophenyl)-5-ethoxycarbonyl-2-methyl-3,7-dihydro-4<u>H</u>-pyrrolo[2,3-<u>d</u>]pyrimidin-4-one³ in 11% yield. In 1985 the synthesis of methyl 2-amino-1-benzyl-4,5-dimethyl-3-pyrrolecarboxylate was reported.⁴ In a recent work from our laboratories⁵ we treated its 2-acetylamino derivative with a mixture of phosphorus pentoxide, triethylamine hydrochloride and anilines and obtained the corresponding 3-aryl-7-benzyl-3,7-dihydro-2,5,6-trimethyl-4<u>H</u>-pyrrolo[2,3-d]pyrimidin-4-ones in 44-66% yields.

Recently⁶ we have circumvented the request of 2-amino-3-pyrrolecarboxylates for the synthesis of 3-arylpyrrolo[2,3-d]pyrimidin-4(3<u>H</u>)-ones by applying our phosphorus reagent to reactions of 2-amino-3-pyrrolecarbonitrile derivatives. Thus, we tried the reaction of N₁-substituted 2-acetylamino-3-pyrrolecarbonitriles with a mixture of phosphorus pentoxide, <u>N,N</u>-dimethylcyclohexylamine hydrochloride, water, and appropriate aniline hydrochlorides. The reaction mixtures were worked up by use of preparative silica gel tlc to afford N₂-substituted 3-arylpyrrolo[2,3-d]pyrimidin-

-367-

 $4(3\underline{H})$ -ones as the main products and the corresponding 3-unsubstituted pyrrolo-[2,3-<u>d</u>]pyrimidin-4(3H)-ones as by-products.

In the present investigation we have extended our method to the synthesis of 7-unsubstituted 3-arylpyrrolo[2,3-<u>d</u>]pyrimidin-4(3<u>H</u>)-ones (2**a**-**j**) by reaction of 2-acetylamino-3-pyrrolecarbonitriles (1) with a mixture of phosphorus pentoxide, <u>N,N</u>-dimethylcyclohexylamine hydrochloride, water, and appropriate aniline hydrochlorides at 180°C for 1 h. The products (2) were isolated easily by crystallization in yields of 18-51%. The structures of products 2 were assigned on the basis of elemental analyses (Table 1), ir, ms, ¹H nmr (Table 2), ¹³C nmr spectroscopies (Table 3), and by comparison of spectral data with those of reference compounds.⁵⁻⁸

3-Ary1-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-ones (2a-j)

General procedure:

The arylamine hydrochloride (60 mmol), <u>N,N-dimethylcyclohexylamine</u> hydrochloride (9.8 g, 60 mmol), and phosphorus pentoxide (8.5 g, 60 mmol) were mixed in a flask with mechanical stirring and protected by a drying tube (CaCl₂). Distilled water (2.16 g, 120 mmol) was added cautiously, and the flask was heated in an oil bath at 200-220°C (oil bath temperature) until a homogeneous mixture was achieved. The oil bath temperature was adjusted to 180°C and the starting pyrrole derivative (1)^{9,10} (15 mmol) was added. After heating for 1 h the reaction mixture was allowed to cool

	R	R^1	R ²	Yield [%]	mp [°C]	Mel Devenula	Analysis		
2						(Mol. Weight)	Calc	H H	na N
a	н	снз	сн ₂ с ₆ н ₅	51	206-207	^C ₂₁ ^H ₁₉ ^N ₃ ^O (329.4)	76.57 76.11	5.81 5.81	12.76 12.64
b	4-CH3	сн _З	сн ₂ с ₆ н ₅	39	210-211	C ₂₂ H ₂₁ N ₃ O (343.4)	76.94 77.28	6.16 6.25	12.23 12.09
с	3-F	сн _З	^C 2 ^H 5 ^C 6 ^H 5	19	208-209	C ₂₁ H ₁₈ N ₃ OF (347.4)	72.61 72.43	5.22 5.18	12.10 11.88
d	4-F	сн _з	сн ₂ с ₆ н ₅	35	251-252	C ₂₁ H ₁₈ N ₃ OF (347.4)	72.61 72.52	5,22 5,30	12.10 11.90
e	4-C1	CH3	сн ₂ с ₆ н ₅	22	249-250	C ₂₁ H ₁₈ N ₃ OC1 (363.8)	69.32 69.26	4.98 4.92	11.55 11.32
f	4-C ₂ H ₅	сн _З	сн ₂ с ₆ н ₅	37	191-192	C ₂₃ H ₂₃ N ₃ 0·1/4H ₂ 0 (362.0)	76.32 76.56	6.54 6.45	11.61 11.64
g	3-CF ₃	CH3	СH ₂ C ₆ H ₅	22	242-243	C ₂₂ H ₁₈ N ₃ OF ₃ (397.4)	66.49 66.86	4. 57 4.54	10.57 10.44
h	Н	CH3	Н	35	250-251	C ₁₄ H ₁₃ N ₃ O (239.3)	70.28 70.02	5.48 5.49	17.56 17.36
i	3-F	снз	н	26	218-219	^C 14 ^H 12 ^N 3 ^{OF} •1/8H ₂ 0 (259.5)	64.79 64.87	4.76 4.78	16.19 15.81
j	Н	с ₆ н ₅	н	18	311.312	C ₁₉ H ₁₅ N ₃ O (301.3)	75.73 75.51	5.01 5.04	13.94 13.65

Table 1. Synthesis of 3-aryl-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-ones 2a-j.

Table 2. Spectral properties.

2	Ir (KBr) (cm ⁻¹)	Ms m/z (%)	¹ H-Nmr (& in DMSO-d ₆)
а	1670(C=0),3420-3220(NH)	329(M ⁺ ,100)	2.06(s,3H),2.26(s,3H),3.96(s,2H), 7.33-7.66(m,10H),11.63(s,1H)
b	1670(C=0),3420-3220(NH)	343(M ⁺ ,100)	2.06(s,3H),2.26(s,3H),2.40(s,3H),3.96 (s,2H),7.26-7.46(m,9H),11.63(s,1H)
с	1670(C=0),3420-3220(NH)	347(M ⁺ ,100)	2.06(s,3H),2.26(s,3H),3.96(s,2H), 7.26-7.70(m,9H),11.63(br s,1H,NH)
đ	1670(C=0),3420-3220(NH)	347(M ⁺ ,100)	2.06(s,3H),2.26(s,3H),3.96(s,2H), 7.26-7.46(m,9H),11.63(br s,1H,NH)
e	1670(C=0),3420-3220(NH)	363(M ⁺ ,100)	2.06(s,3H),2.26(s,3H),3.96(s,2H), 7.23-7.70(m,9H),11.73(br s,1H,NH)
f	1670(C=0),3420-3220(NH)	357(M ⁺ ,100)	1.30(3H,t,J=7Hz),2.06(s,3H),2.26(s,3H), 2.70(2H,q,J=7Hz),3.96(s,2H),7.03-7.63 (m,9H),11.63(br s,1H,NH)
g	1670(C=0),3420-3220(NH)	397(M ⁺ ,100)	2.06(s,3H),2.26(s,3H),3.96(s,2H), 7.23-7.90(m,9H),11.63(br s,1H,NH)
h	1685(C=O),3430-3220(NH)	239(M ⁺ ,100)	2.06(s,3H),2.26(s,3H),6.80(s,1H),7.20 (m,5H),11.56(br s,1H,NH)
i	1685(C=0),3430-3220(NH)	257(M ⁺ ,100)	2.10(s,3H),2.30(s,3H),6.80(s,1H), 7.30-7.46(m,4H),11.63(br s,1H,NH)
j	1665(C=0),3410-3220(NH)	301(M ⁺ ,100)	2.13(s,3H),7.26(s,1H),7.43-7.53(m,10H), 12.16(br s,1H,NH)

с	2a	2Ъ	2c	2d	2e	2f	2g	2h	2i	2j
2	151.7	151.9	151.5	151.8	151.5	152.0	151.4	152,3	152.1	153.0
4	159.1	159.1	159.0	159.1	159.0	159.2	159.1	159.3	159.2	158.9
4a	104.2	104.2	104.2	104.2	104.2	104.2	104.2	103.9	103.9	102.0
5	109.5	109.5	109.6	109.5	109.6	109.5	109.7	113.6	113.7	118.4
6	128,5	128.5	128.7	128,6	128.7	b	128.8	117.2	117.3	120.2
7a	145.9	145.9	145.9	145.9	145.7	145,9	146.0	146.8	146.7	148.3
1'	139.7	135.9	140.2(d) (10.1)	134.8(d) (3.4)	137.5	136.2	139.7	136.5	140.1(d) (10.1)	138.7
2'	128.3	128.3	115.5(d) (20.8)	130.8(d) (9.3)	129.3	128.3	125.9	128.7	115.5(d) (20.8)	128.2
3'	129.2	129.7	162.2(d) (244.7)	116.0(d) (23.0)	130.7	128.6	130.2(q) (32.1)	129.3	162.2(d) (244.7)	129.3
4'	128.6	139.7	116.4(d) (23.3)	161.6(d) (245.1)	133.0	143.9	125.9	128.4	116.4(d) (22.6)	128.6
5'			130.7(d) (8.8)				130.5		130.8(d) (8.8)	
6'			125.2(d) (3.1)				133.2		125.2(d) (3.2)	
1"	138.5	137.7	139.7	139.7	139.7	139.7	139.5			134,1
2"	128.0	127.9	128.0	128.0	128.0	128.0	128.0			125.7
3"	128.6	128.5	128.7	128.3	128.3	128.4	128.3			128.3
4"	125.9	125.9	125.9	125.9	125.9	125.9	125.9			127.8
2-СН ₃	23.7	23.7	23.6	23.8	23.7	23.8	23.8	23.8	23.7	23.8
5–Сн ₃	9.5	9.5	9.5	9.5	9.5	9,5	9,5	11.1	11.0	
4'-CH ₃		20.6								
4'-CH ₂ CH ₃	l					15.4				
4'- <u>C</u> H2CH3	ł					27.7				
6-CH2	30.7	30.7	30.7	30.7	30.7	30.7	30.7			
3'-CF ₃							123.8(q) (272)			

Table 3. 13 C-Nmr spectra (δ in DMSO-d₆).^a

 $^{\rm a}\!Values$ in parentheses refer to C-F couplings in Hz. $^{\rm b}\!Assignment$ uncertain.

to about 100°C and 2M NaOH solution (ca. 250 ml) was added (pH 9-11). The mixture was stirred at room temperature until the reaction cake was digested. Then the alkaline aqueous solution was extracted with CH_2Cl_2 (3 x 100 ml). CH_2Cl_2 was stripped off and <u>N,N</u>-dimethylcyclohexylamine was distilled off at 10 mmHg. The unreacted aniline derivatives were distilled off at 1 mmHg at 100°C. The crude product was recrystallized from methanol.

REFERENCES

- 1) Present address: Faculty of Science, Menoufia University, Shebin El-Koam, Egypt.
- 2) K. Gewald, M. Kleinert, B. Thiele, and M. Hentschel, <u>J. Prakt. Chem.</u>, 1972, **314**, 303.
- 3) H. Pöhlmann, S. Heyne, R. Kraft, and S. Pfeifer, Pharmazie, 1976, 31, 28.
- 4) J. A. S. Laks, J. R. Ross, S. M. Bayoni, and J. W. Sowell, Sr., <u>Synthesis</u>, 1985, 291.
- 5) A. Jørgensen, Heterocycles, 1986, 24, 997.
- 6) K. M. H. Hilmy, J. Mogensen, and E. B. Pedersen, Chem. Scr., 1988, 28, 303.
- 7) T. M. Chenon, J. R. Pugmive, M. D. Grant, P. R. Panzica, and B. L. Townsend, <u>J.</u> Amer. Chem. Soc., 1975, 97, 4627.
- E. D. Bergstrom, J. A. Brattesani, K. M. Ogawa, and J. M. Schweickert, <u>J. Org.</u> Chem., 1981, 46, 1423.
- 9) N. S. Girgis, A. Jørgensen, and E. B. Pedersen, Liebigs Ann. Chem., 1983, 2066.
- 10) V. I. Shvedov, M. V. Mezentseva, and A. N. Grinev, <u>Khim. Geterotsikl. Soedin</u>, 1975, 1217 (<u>Chem. Abstr.</u>, 1976, 84, 59299s).

Received, 6th November, 1989