ALKYLATIVE LACTONIZATION OF  $\gamma$ ,  $\delta$ -unsaturated esters with  $\alpha$ -Chloro sulfides. A concise synthesis of the monoterpene lactone from chrysanthemum flosculosum L.

Hiroyuki Ishibashi,\* Hiroshi Nakatani, Taru Su So, Toyokazu Fujita, and Masazumi Ikeda Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607, Japan

<u>Abstract</u>—The  $\gamma, \delta$ -unsaturated ester 1, on being treated with  $\alpha$ -chloro sulfides 2 in the presence of SnCl<sub>4</sub>, underwent an alkylative lactonization to give the  $\delta$ -lactones 3. This method was applied to the synthesis of the monoterpene lactone **4** isolated from Crysanthemum flosculosum L.

Lactonizations of unsaturated carboxylic acids and esters are important synthetic methods. Halo-lactonization,<sup>1</sup> together with sulfenyl-<sup>2</sup> and selenenyl-lactonization<sup>3</sup> have been widely exploited in the natural products synthesis. However, the corresponding alkylative lactonization has received scant attention.<sup>4</sup> In this paper we wish to report a new synthesis of  $\delta$ -lactones by Lewis acid promoted alkylative lactonization of  $\gamma, \delta$ -unsaturated esters with  $\alpha$ -chloro sulfides. Application of this method to the synthesis of the naturally occurring lactone **4** is also described.

The reactions of ethyl 5-methylhex-4-enoate (1) with a series of  $\alpha$ -chloro sulfides 2 were examined first. In general, a 1:1 mixture of 1 and 2 was treated with 1.1 equiv. of SnCl<sub>4</sub> in dichloromethane at -20°C for 30 min; this gave the expected  $\delta$ -



lactones **3a** (14%, mp 71-73°C), <sup>5</sup> **3b** (49%, mp 90.5-91.5°C), <sup>5</sup> **3c** (46%, mp 83-85°C), and **3d** (60%, mp 110-111°C), respectively. <sup>6</sup> These results indicate that the 3,4dichlorophenyl group is superior to the 4-chlorophenyl group as a substituent on the sulfur atom of the chloride 2. The lactones **3c** and **3d** were obtained as the mixtures of two diastereoisomers in a ratio of <u>ca</u>. 19:1 (by 300 MHz <sup>1</sup>H-nmr), which, on exposure to tetrabutylammonium fluoride, gave the desilylated lactones **3a** and **3b** in 98 and 77% yields, respectively.

The lactone 4, isolated from Crysanthemum flosculosum L.,<sup>7</sup> is an irregular monoterpenoid having the santolinyl skeleton 6 which does not conform to the isoprene rule. Uda and co-workers,<sup>8</sup> in the first synthesis of 4, established unambiguously the geometry of the 5-ethylidene side-chain of the natural lactone to be <u>Z</u>-form as 4 but not (<u>E</u>)-5. They also showed that irradiation of 5 yielded the natural lactone 4.







i,  $SnCl_4$ ,  $CH_2Cl_2$ , 0°C, 30 min; ii, LDA, THF, -78°C, 30 min then MeSSMe, THF, -78°C, 1.5 h; iii, MCPBA,  $CH_2Cl_2$ , room temp., 1 h; iv,  $NaHCO_3$ , toluene, reflux, 3 h; v, MCPBA,  $CH_2Cl_2$ , 0°C, 2 h then room temp. 15 h; vi, DBU, benzene, 150°C, 2 h; vii, hv, benzene, 3 h.

Our synthesis of 5 as a pivotal relay to 4 was begun by applying the above alkylative lactonization process to the direct construction of its santolinyl skeleton. Thus, treatment of the ester 7 with the chloride 8 under similar conditions to those above, and successive chromatographic separation afforded, in 35% yield, the less polar lactone 9 and a trace amount of the polar lactone 9.<sup>9</sup> The former was found to be a mixture of three of possible four diastereoisomers in a ratio of 62:32:6 (by 300 MHz <sup>1</sup>H-nmr), and the latter to be the fourth stereoisomer. Further experimentation has revealed that the use of molar ratio of 7:8:SnCl<sub>4</sub>=1:2:3 at 0°C raised the yield of 9 to 73% (the less polar lactone: 56% and the polar lactone: 17%).

The next stage of the synthesis required the introduction of two olefinic bonds into 9. Sequential treatment of the less polar lactone 9 with lithium diisopropylamide (LDA) and then with dimethyl disulphide afforded the methylthio derivative 10 in 52% yield, along with the recovered 9 (16%). Oxidation of 10 with m-chloroperbenzoic acid followed by heating of the resultant sulfoxide in refluxing toluene gave a mixture (ca. 1:1) of the unsaturated lactone 11a ( $\delta$  6.54, m) and its exo-methylene isomer 11b [ $\delta$  5.66 (br s) and 6.50 (m)] in 74% total This mixture was then oxidized (66% yield) with 2 equiv. of m-chloroperyield. benzoic acid, and the resultant mixture of the sulfones 12a and 12b was heated with DBU in benzene in a sealed tube at 150°C to give the lactone  $5^8$  in 64% yield. Interestingly, no corresponding exo-methylene lactone derived from 12b was detected in the crude reaction mixture. This might be a result of an isomerization of the exo-methylene sulfone 12b to 12a under the basic conditions used. Finally, irradiation of 5 in benzene with 300 W high-pressure mercury lamp through Pyrex for 3 h furnished the lactone 4, mp 61.5-62.5°C, lit<sup>8</sup> 63.5-64.5°C, in 53% yield, along with the recovered 5 (35%). Thus, we succeeded in a concise total synthesis of the monoterpenoid 4 by using the alkylative lactonization of the unsaturated ester 7 with  $\alpha$ -chloro sulfide 8 as a key step, by seven chemical operations.

The preliminary results reported herein demonstrate clearly the viability of our approach to  $\delta$ -lactones by alkylative lactonization of unsaturated esters. We are continuing in our studies of the synthetic potential of this methodology.

## ACKNOWLEDGEMENT

The authors thank Professor Hisashi Uda, Tohoku University, for providing spectra of compound 4.

## REFERENCES AND NOTES

- M. D. Dowle and D. I. Davies, <u>Chem. Soc. Rev.</u>, 1979, 8, 171; G. W. Holbert and B. Ganem, <u>J. Am. Chem. Soc</u>., 1978, 100, 352; P. Kočovský and F. Tureček, <u>Tetrahedron</u>, 1983, 39, 3621.
- 2. K. C. Nicolaou and Z. Lysenko, J. Chem. Soc., Chem. Commun., 1977, 293.
- 3. D. L. J. Clive and G. Chittattu, <u>J. Chem. Soc., Chem. Commun</u>., 1977, 484; C. Paulmier, 'Selenium Reagents and Intermediates in Organic Synthesis,' Pergamon Press, 1986, pp. 232-238.
- For an intramolecular version, see R. B. Ruggeri, K. F. McClure, and C. H. Heathcock, J. Am. Chem. Soc., 1989, 111, 1530.
- 5. 3a: Ir (ν, cm<sup>-1</sup>, CCl<sub>4</sub>) 1740. <sup>1</sup>H-Nmr (δ, ppm, 60 MHz, CDCl<sub>3</sub>) 1.29 (3H, s, Me),
  1.42 (3H, s, Me), 1.5-2.7 (6H, m), 3.13 (1H, dd, J=13, 3 Hz, one of SCH<sub>2</sub>), 7.22 (4H, s, ArH). 3b: Ir (ν, cm<sup>-1</sup>, CCl<sub>4</sub>) 1740. <sup>1</sup>H-Nmr (δ, ppm, 60 MHz, CDCl<sub>3</sub>)
  1.33 (3H, s), 1,45 (3H, s), 1.6-2.9 (6H, m), 3.22 (1H, dd, J=13, 3 Hz, one of SCH<sub>2</sub>), 7.1-7.6 (3H, m).
- The side products isolated in these reactions were the unsaturated esters I and the dithioacetals II.



- 7. F. Bohlmann and M. Grenz, Tetrahedron Lett., 1969, 2413.
- S. Yamagiwa, H. Kosugi, and H. Uda, <u>Bull. Chem. Soc. Jpn.</u>, 1978, 51, 3011.
   For another synthesis of 4, see D. V. Banthorpe and P. N. Christou, <u>J. Chem.</u> <u>Soc.</u>, Perkin Trans. 1, 1981, 105.
- 9. Ir ( $\nu$ , cm<sup>-1</sup>, CCl<sub>4</sub>) 1730. <sup>1</sup>H-Nmr ( $\delta$ , ppm, 60 MHz, CDCl<sub>3</sub>) 1.2-1.5 (12H, m), 1.6-2.8 (4H, m), 3.52 (1H, dq, J=2, 7 Hz, SCH), 7.2-7.6 (3H, m).

Received, 7th November, 1989